

sphinx-quickstart on Tue Oct 6 16:03:26 2020.
You can adapt this file completely to your liking, but it should at least
contain the root toctree directive.

[image: _images/logo-full.png]

EGTtools – Toolbox for Evolutionary Game Theory

EGTtools provides a centralized repository with analytical and numerical methods to study/model game theoretical
problems under the Evolutionary Game Theory (EGT) framework.

This library is composed of two parts:

	a set of analytical methods implemented in Python 3

	a set of computational methods implemented in C++ with (Python 3 bindings)

The second typed is used in cases where the state space is too big to solve analytically, and thus require estimating
the model parameters through monte-carlo simulations. The C++ implementation provides optimized computational methods
that can run in parallel in a reasonable time, while Python bindings make the methods easily accecible to a larger range
of researchers.

Citing EGTtools

You may cite this repository in the following way:

@misc{Fernandez2020,
 author = {Fernández Domingos, Elias},
 title = {EGTTools: Toolbox for Evolutionary Game Theory},
 year = {2020},
 publisher = {GitHub},
 journal = {GitHub repository},
 howpublished = {\url{https://github.com/Socrats/EGTTools}},
 doi = {10.5281/zenodo.3687125}
}

Acknowledgements

I would like to thank Prof. Tom Lenaerts and Prof. Francisco C. Santos for the great help
in building this library.

We would also like to thank Yannick Jadoul author of
Parselmouth and Eugenio Bargiacchi author of AIToolBox
for their great advice on the implementation of EGTtools.

Indices and tables

	Index

	Module Index

	Search Page

Installation

From PyPi

EGTtools can be installed using PyPi on Linux, macOS, and Windows:

pip install egttools

To update your installed version to the latest release, add -U (or --upgrade) to the command:

pip install -U egttools

Note

Currently, only the Linux build supports OpenMP parallelization for numerical simulations. This should normally be
ok for most applications, since numerical simulations are heavy (computationally) and should be run on a
High Power Computing (HPC) clusters
which normally run Linux distributions. We are investigating how to provide support for OpenMP in both Windows
and Mac OSX. In the meantime, if you really want to run numerical simulations on either of these two platforms,
you should follow the compilation instructions below and try to link OpenMP for your platform yourself.
Please, if you manage to do so, open an issue or a pull request with your solutions.

Warning

The arm64 and universal2::arm64 have not been tested upstream on CI, so please report any issues or bugs you
may encounter.

Warning

For Apple M1 (arm64) you should install using pip install egttools --no-deps so that pip does not
install the dependencies of the package. This is necessary since there is no Scipy wheel for architecture arm64
available on PyPi yet.
To install the package dependencies you should create a virtual environment
with miniforge [https://github.com/conda-forge/miniforge]. Once you have miniforge installed you can do the
following (assuming that you are in the base miniforge environment):

conda create -n egtenv python=3.9
conda activate egtenv
conda install numpy
conda install scipy
conda install matplotlib
conda install networkx
conda install seaborn

Build from source

To build egttools from source you need:

	A recent version of Linux (only tested on Ubuntu), MacOSX (Mojave or above) or Windows

	CMake version 3.17 or higher

	C++ 17

	Eigen 3.3.*

	Boost 1.80.*

	Python 3.7 or higher

Warning

Boost is required in order for EGTtools to use multiprecision integers and
floating point numbers with higher precision. You may still be able to compile EGTtools without Boost,
but we highly recommend don’t.

Once you install these libraries, you can follow the following steps.

To install all required packages run:

python -m venv egttools-env
source egttools-env/bin/activate
pip install -r requirements.txt

Or with anaconda:

conda env create -f environment.yml
conda activate egttools-env

Also, to make your virtual environment visible to jupyter:

conda install ipykernel # or pip install ipykernel
python -m ipykernel install --user --name=egttools-env

You can build EGTtools by running:

pip install build
cd <path>
python -m build

Where <path> represents the path to the EGTtools folder. If you are running this while inside the EGTtools folder,
then <path> is simply ./.

Finally, you can install EGTtools in development mode, this will allow the installation to update with new
modifications to the package:

python -m pip install -e <path>

If you don’t want development mode, you can skip the option `-e`.

Python distributions

	Anaconda
	If you use the Anaconda distribution of Python, you can use the same pip command in a terminal of the appropriate Anaconda environment, either activated through the Anaconda Navigator [https://docs.continuum.io/anaconda/navigator/tutorials/manage-environments/#using-an-environment] or conda tool [https://conda.io/projects/continuumio-conda/en/latest/user-guide/tasks/manage-environments.html#activating-an-environment].

	PyPy
	Recent versions of PyPy are supported by the pybind11 project [https://github.com/pybind/pybind11] and should thus also be supported by EGTtools.

	Other
	For other distributions of Python, we are expecting that our package is compatible with the Python versions that are out there and that pip can handle the installation. If you are using yet another Python distribution, we are definitely interested in hearing about it, so that we can add it to this list!

Troubleshooting

It is possible that you run into problems when trying to install or use EGTtools. This may happen because
you are running on a different platform or configuration than what we have listed, or simply because we have
not considered your particular scenario/environment.

If this is the case, and you do run into problems,
please create a GitHub issue [https://github.com/Socrats/EGTtools/issues],
or write me a quick email.
We would be very happy to solve these problems, so that future users can avoid them and we can expand the use of our
library.

Pip version

If the standard way to install EGTtools results in an error or takes a long time,
try updating pip to the latest version by running

pip install --upgrade pip

If you do not have pip installed, you can follow these instructions to
install pip: https://pip.pypa.io/en/stable/installing/

Tutorials

The egttools library is structured in a way that allows the
user to apply all analytical and numerical methods
implemented in the library to any Game, as long as it follows a common interface.
It also provides several plotting functions and classes to help the user visualize the result of the
models. The following figure shows, at a high level, what is the intended structure of egttools.

[image: Structure of egttools]
In the following links you may find more information and examples about how to
use the analytical and numerical methods implemented in egttools; how to implement new Games;
and how to implement new strategies or behaviors for the existing games:

	Create a new game
	Implementing a new game from scratch: the AbstractGame class

	Simplifying game implementation: AbstractTwoPLayerGame and AbstractNPlayerGame classes

	Example: The N-player Stag-Hunt Game

	What if you already have calculated a matrix of expected payoffs?

	List of implemented games

	Create new behaviors for existing games
	Recommendations on implementing strategies for a new game

	Implementing new strategies for a Normal Form Game

	Apply analytical methods
	The replicator dynamics
	2-player games

	N-player games

	Stochastic dynamics in finite populations: the pairwise comparison rule
	Small Mutation Limit (SML)

	How to use this model in EGTtools

	Apply numerical methods
	Estimate fixation probabilities

	Estimate stationary distributions

	Estimate strategy distributions

	Run a single simulation

	Evolve a population for a given number of rounds

	Visualizing results
	Populations with 2 strategies
	The gradient of selection and stability in infinite populations

	The gradient of selection in finite populations

	Plotting the stationary distribution

	Populations with 3 strategies
	The Simplex2D class

	The gradient of selection and stability in infinite populations

	The gradient of selection and stationary distribution in finite populations

	Populations with more than 3 strategies

	Utility functions

	References

How to create a new game

Implementing a new game from scratch: the AbstractGame class

The Game class is core to the EGTtools library, as it defines the
environment in which strategic interactions take place. All
games must extend the AbstractGame abstract class.
This class nine methods:

	play

	calculate_payoffs

	calculate_fitness

	__str__

	nb_strategies

	type [https://docs.python.org/3/library/functions.html#type]

	payoffs

	payoff

	save_payoffs

Below you can see a description of this class in Python and the
purpose of each method:

class AbstractGame:
 def play(self, group_composition: Union[List[int], numpy.ndarray], game_payoffs: numpy.ndarray) -> None:
 """
 Calculates the payoff of each strategy inside the group.

 Parameters

 group_composition: Union[List[int], numpy.ndarray]
 counts of each strategy inside the group.
 game_payoffs: numpy.ndarray
 container for the payoffs of each strategy
 """
 pass

 def calculate_payoffs(self) -> np.ndarray:
 """
 This method should set a numpy.ndarray called self.payoffs_ with the
 expected payoff of each strategy in each possible
 state of the game
 """"
 pass

 def calculate_fitness(self, strategy_index: int, pop_size: int, population_state: numpy.ndarray) -> float:
 """
 This method should return the fitness of strategy
 with index `strategy_index` for the given `population_state`.
 """
 pass

 def __str__(self) -> str:
 """
 This method should return a string representation of the game.
 """
 pass

 def nb_strategies(self) -> int:
 """
 This method should return the number of strategies which can play the game.
 """
 pass

 def type(self) -> str:
 """
 This method should return a string representing the type of game.
 """
 pass

 def payoffs(self) -> np.ndarray:
 """
 This method should return the payoff matrix of the game,
 which gives the payoff of each strategy
 in each given context.
 """
 pass

 def payoff(self, strategy: int, group_configuration: List[int]) -> float:
 """
 This method should return the payoff of a strategy
 for a given `group_configuration`, which gives
 the counts of each strategy in the group.
 This method only needs to be implemented for N-player games
 """
 pass

 def save_payoffs(self, file_name: str) -> None:
 """
 This method should implement a mechanism to save
 the payoff matrix and parameters of the game to permanent storage.
 """
 pass

Simplifying game implementation: AbstractTwoPLayerGame and AbstractNPlayerGame classes

However, in most scenarios the fitness of a strategy at a given population
state is its expected payoff at that state. For this reason,
egttools provides two other abstract classes to simplify the
implementation of new games:

	egttools.games.AbstractTwoPLayerGame, for two-player games;

	and egttools.games.AbstractNPlayerGame for N-player games.

When using these abstract classes, you only need to implement two methods:

	play and calculate_payoffs.

Example: The N-player Stag-Hunt Game

Below you can find an example on how to implement the
N-player Stag Hunt game from Pacheco et al. [1] :

from egttools.games import AbstractNPlayerGame
from egttools import sample_simplex

class NPlayerStagHunt(AbstractNPlayerGame):

 def __init__(self, group_size, enhancement_factor, cooperation_threshold, cost):
 self.group_size_ = group_size # N
 self.enhancement_factor_ = enhancement_factor # F
 self.cooperation_threshold_ = cooperation_threshold # M
 self.cost_ = cost # c
 self.strategies = ['Defect', 'Cooperate']

 self.nb_strategies_ = 2
 super().__init__(self.nb_strategies_, self.group_size_)

 def play(self, group_composition: Union[List[int], np.ndarray], game_payoffs: np.ndarray) -> None:
 if group_composition[0] == 0:
 game_payoffs[0] = 0
 game_payoffs[1] = self.cost_ * (self.enhancement_factor_ - 1)
 elif group_composition[1] == 0:
 game_payoffs[0] = 0
 game_payoffs[1] = 0
 else:
 game_payoffs[0] = ((group_composition[1]
 * self.enhancement_factor_)
 / self.group_size_) if group_composition[
 1] >= self.cooperation_threshold_ else 0 # Defectors
 game_payoffs[1] = game_payoffs[0] - self.cost_ # Cooperators

 def calculate_payoffs(self) -> np.ndarray:
 payoffs_container = np.zeros(shape=(self.nb_strategies_,), dtype=np.float64)
 for i in range(self.nb_group_configurations_):
 # Get group composition
 group_composition = sample_simplex(i, self.group_size_, self.nb_strategies_)
 self.play(group_composition, payoffs_container)
 for strategy_index, strategy_payoff in enumerate(payoffs_container):
 self.payoffs_[strategy_index, i] = strategy_payoff
 # Reinitialize payoff vector
 payoffs_container[:] = 0

 return self.payoffs_

What if you already have calculated a matrix of expected payoffs?

In case you have calculated a matrix of expected payoffs for all strategies, and do not want to waste time in implementing
a new game. You can make use of the container classes egttools.games.Matrix2PlayerGameHolder for 2-player games
and egttools.games.MatrixNPlayerGameHolder for N-player games.

	
	Matrix2PlayerGameHolder:
	This class expects the number of strategies (nb_strategies) in the game and the matrix of expected payoffs
as a parameter. The payoff matrix must be square and have the shape (nb_strategies, nb_strategies). So that
each entry gives the expected payoff of the row strategy versus the column strategy.

	
	MatrixNPlayerGameHolder:
	This class expects the number of strategies (nb_strategies), size of the group (group_size)
and the matrix of expected payoffs as a parameter. In this case the payoff matrix must have the shape
(nb_strategies, nb_group_configurations), where nb_group_configurations is the total number of
combinations of strategies in the group, and can be obtained using
egttools.calculate_nb_states(group_size, nb_strategies). Thus, each entry in the matrix
must give the expected payoff of the row strategy in the group configuration given by the column index.
You can obtain the group configuration from an index using egttools.sample_simplex(index, group_size, nb_strategies).
When the row strategy in not present in the column group configuration, the payoff in this entry must be 0.

Note

You can find an example of how to use these classes here.

List of implemented games

	
	NormalFormGame: implements iterated normal form games (matrix games).
	This class expects as parameters the number of rounds of the game, a payoff matrix, and a list
of strategies that will play the game. You can find more information on how to use implemented
strategies or implement new ones here.

	
	PGGimplements a version of a Public Goods Game.
	This game expects the size of the group, the cost of cooperation, a multiplication factor and the set of
strategies that will play the game as parameters. You can find more information on how to use implemented
strategies or implement new ones here.

	
	OneShotCRDimplements the one-shot collective risk dilemma described by Santos and Pacheco [2].
	This game takes as parameters and endowment, which will be equal for all group members, the cost of cooperation,
the risk of collective failure, the size of the group, and the minimum number of cooperators in a group
required to reach the collective target.

	
	CRDGameimplements the collective risk dilemma proposed by Milinski et al. [3].
	This game takes as parameters and endowment, which will be equal for all group members, a threshold, i.e., the
collective target contributions, the number of rounds of the game, the size of the group, the risk of
collective failure, an enhancement factor, which multiples the payoffs of all members of the group
when they reach the collective target, and a List with the strategies that will play the game. You can find
more information on how to use implemented
strategies or implement new ones here.

	
	NPlayerStagHuntimplements the N-player stag hunt game proposed in Pacheco et al. [1].
	This game takes as parameters the size of the group, and enhancement factor, a cooperation threshold, i.e.,
the minimum number of cooperators required to provide the public good, and the cost of cooperation.
The game is implemented so that the only strategies playing the game is Cooperate and Defect.

Create new behaviors for existing games

Recommendations on implementing strategies for a new game

Implementing new strategies for a Normal Form Game

Apply analytical methods

The replicator dynamics

The replicator equation represents the dynamics of competing individuals in an infinite population
(\(Z\rightarrow \infty\)). It defines the rate at which the frequency of strategies in a population will change, i.e.,
it defines a gradient of selection [2]. It is often found in the form of
[4]

\[\dot x_{i} = x_{i} \left(f_i(\vec{x})-\sum_{j=1}^{N}{x_{j}f_j(\vec{x})}\right)\]

where \(x_i\) represents the frequency of strategy \(i\) in the population,
and \(f_i(\vec{x})=\Pi_i(\vec{x})\) its fitness (or expected payoff), given the current population state
\(\vec{x}\). The term \(\sum_{j=1}^{N}{x_{j}f_j(\vec{x})}\) represents the average fitness of
the population in state \(\vec{x}\).

EGTtools implements the replicator equation for 2 and N-player games in the functions egttools.analytical.replicator_equation
and egttools.analytical.replicator_equation_n_player. Both methods require a payoff matrix as argument. For
2-player games, this payoff matrix must be square and have as many rows (columns) as strategies in the population.
For N-player games, the payoff_matrix reads as the payoff of the row strategy at the group configuration given
by the index of the column. The group configuration can be retrieved from the index using
egttools.sample_simplex(index, group_size, nb_strategies), where group_size is the size of the group (N) and
nb_strategies is the number of available strategies in the population.

2-player games

For a 2 player hawk-dove game, you can calculate the gradients of selection, the roots and their stability
with:

import numpy as np
import egttools as egt
from egttools.analytical.utils import (calculate_gradients, find_roots, check_replicator_stability_pairwise_games,)

Calculate gradient
payoffs = np.array([[-0.5, 2.], [0., 0]])
x = np.linspace(0, 1, num=101, dtype=np.float64)
gradient_function = lambda x: egt.analytical.replicator_equation(x, payoffs)
gradients = calculate_gradients(np.array((x, 1 - x)).T, gradient_function)

Find roots and stability
roots = find_roots(gradient_function, nb_strategies=2, nb_initial_random_points=10, method="hybr")
stability = check_replicator_stability_pairwise_games(roots, A)

Plot the gradient
egt.plotting.plot_gradients(gradients[:, 0], xlabel="frequency of hawks", roots=roots, stability=stability)

You can then plot the gradient of selection with:

egt.plotting.plot_gradients(gradients[:, 0], xlabel="frequency of hawks", roots=roots, stability=stability)

[image: Gradient of selection of a Hawk Dove game]
You can find other examples here.

N-player games

When \(N>2\), the game is played among groups of more than 2 players. In this case,
to analyse the replicator dynamics, we need to use egt.analytical.replicator_equation_n_player instead.

For example for a 3-player Hawk-Dove game we have:

payoff_matrix = np.array([
 [-0.5, 2. , 1. , 3.],
 [0. , 0. , 1. , 2.]
])

gradient_function = lambda x: egt.analytical.replicator_equation_n_player(x, payoff_matrix, group_size=3)
gradients = calculate_gradients(np.array((x, 1 - x)).T, gradient_function)

Plot the gradient
egt.plotting.plot_gradients(gradients[:, 0], xlabel="frequency of hawks")

[image: Gradient of selection of a N-player Hawk Dove game]

Note

For the moment egttools only supports the analytical calculation of stability for
the replicator equation for 2-player games. We have planned to add support for
N-player games in version 0.13.0.

Stochastic dynamics in finite populations: the pairwise comparison rule

The replicator dynamics assumes that populations have infinite size. This is convenient from a technical point of view,
as it allows using relatively simple differential equations to model complex evolutionary processes.
However, in many occasions, when modelling realistic problems, we cannot neglect the stochastic effects
that come along when individuals interact in finite populations [5].

We now consider a finite population of \(Z\) individuals, who interact in groups of size \(N\in[2,Z]\),
in which they engage in strategic interactions (or games). Each individual can adopt one of the \(n_s\) strategies.
The success (or fitness) of an individual can be computed as the expected payoff of the game in
a given state \(\vec{x}\).

We adopt a stochastic birth-death process combined with the pairwise comparison rule
[1, 5, 6] to describe the social
learning dynamics of each of the strategies in a finite population.
At each time-step, a randomly chosen individual \(j\) adopting strategy \(\vec{e_{j}}\) has the opportunity to
revise her strategy by imitating (or not) the strategy of a randomly selected member of the population \(i\).
The imitation will occur with a probability \(p\) which increases with the fitness difference
between \(j\) and \(i\).
Here we adopt the Fermi function (see Equation below), which originates from statistical physics and
provides a well defined mapping between \(\mathbb{R}^+ \rightarrow [0,1]\). Please also note that since the population
is finite, instead of assuming the frequencies of each strategy in the population (\(x_i\)) we use the absolute
value \(k_i\) so that \(x_i \equiv[k_i/Z]\).

\[\begin{equation}
\label{eq:fermi_function}
 p\equiv[1+e^{\beta(f_i(k_{i})-f_j(k_{j}))}]^{-1}
\end{equation}\]

In equation above, \(f_j\) (\(f_i\)) is the fitness of individual \(j\) (\(i\)) and \(\beta\),
also known as inverse temperature, controls the intensity of selection and the accuracy of the imitation process.
For \(\beta \rightarrow 0\), individual fitness is but a small perturbation to random drift; for
\(\beta \rightarrow\infty\) imitation becomes increasingly deterministic. Also,
\(k_{i}\) represents again the total number of
individuals adopting strategy \(i\). In addition, we consider that, with a mutation (or exploration)
probability \(\mu\), individuals adopt a randomly chosen strategy, freely exploring the strategy space.
Overall this adaptive process defines a large-scale Markov chain, in which the transition probabilities
between states are defined in function of the fitness of the strategies in the population and their frequency.
The complete characterization of this process becomes unfeasible as the number of possible population configurations
scales with the population size and the number of strategies following
\(\binom{Z+n_s-1}{n_s-1}\) [7].

The probability that the number \(k\) of participants adopting a cooperative
strategy \(C\) would increase (\(T^+(k)\)) or decrease (\(T^-(k)\))
can be specified as [5]:

\[\begin{split}\begin{equation}
 \label{eq:prob_increase_decrease}
 \begin{split}
 T^+ &= (1-\mu)\frac{Z-k}{Z}\frac{k}{Z-1}[1+e^{-\beta(f_i-f_j)}]^{-1} + \mu\frac{Z-k}{Z}\\
 T^- &= (1-\mu)\frac{k}{Z}\frac{Z-k}{Z-1}[1+e^{\beta(f_i-f_j)}]^{-1} + \mu\frac{k}{Z}\\
 \end{split}
\end{equation}\end{split}\]

Small Mutation Limit (SML)

The Markov chain described above can quickly become too complex for
analytical description as the number of strategies, even for small population sizes.
However, whenever in the limit where mutations are rare (\(\mu \rightarrow 0\)) it is possible to approximate
the complete stochastic process by a Markov chain with a number of states given by the number of strategies.
In this small mutation limit (SML) [6],
when a new strategy appears through mutation, one of two outcomes occurs long before the occurrence of a new mutation:
either the population faces the fixation of a newly introduced strategy, or the mutant strategy goes extinct.

Hence, there will be a maximum of two strategies present simultaneously in the population. This allows us to describe
the behavioural dynamics in terms of a reduced Markov Chain of size \(n_s\), whose transitions are defined
by the fixation probabilities \(\rho_{ji}\) of a single mutant with strategy \(i\) in a population of
individuals adopting another strategy \(j\)
[5, 8, 9].

\[\begin{equation}
 \rho_{ji}=\left(1+\sum_{m=1}^{Z-1}\prod_{k=1}^m\frac{T^- (k)}{T^+ (k)}\right)^{-1}
\end{equation}\]

How to use this model in EGTtools

All of these analytical equations are implemented in the class egttools.analytical.PairwiseComparison, which
contains the following methods:

	
	calculate_fixation_probability(invading_strategy_index, resident_strategy_index:, beta:):
	Calculates the fixation probability of a single mutant of an invading strategy of index
invading_strategy_index in a population where all individuals adopt the strategy with index
resident_strategy_index. The parameter beta gives the intensity of selection.

	
	calculate_transition_and_fixation_matrix_sml(beta):
	Calculates the transition and fixation matrices assuming the SML. Beta gives the intensity of selection.

	
	calculate_gradient_of_selection(beta, state):
	Calculates the gradient of selection (without considering mutation) at a given population state. The state
parameter must be an array of shape (nb_strategies,), which gives the count of individuals in the population
adopting each strategy. This method returns an array indicating the gradient in each direction. In this
stochastic model, gradient of selection means the most likely path of evolution of the population.

	
	calculate_transition_matrix(beta, mu):
	Calculates the transition matrix of the Markov chain that defines the dynamics of the population. beta gives
the intensity of selection and mu the mutation rate.

You can see an example of the SML here,
and of the calculation of the full transition matrix here.

Note

Currently, egttools only implements the moran process with the pairwise
comparison rule. However, we have planned to add other evolutionary game
theoretical models soon, such as the frequency dependant moran process or the
Wright-Fisher process.

Note

We will add support for multiple populations soon.

Apply numerical methods

Often the complexity of the problem (either due to a high number of strategies or a big population size) makes
numerical simulations a requirement. egttools implements several method to estimate the main indicators required
to characterize a population through the stochastic evolutionary dynamics methods described in
here in the egttools.numerical.PairwiseMoranNumerical class.

All this class requires is a game which must inherit from the egttools.games.Abstract game class and population
size as parameters. It also requires that you specify a cache size. You should
take into account the memory (RAM) available in the machine you will run the simulations,
as this parameter is used to determine the size of the cache where the computed fitness values
will be stored, so that the simulation can run faster. It implements the following methods:

	
	estimate_fixation_probability(index_invading_strategy, index_resident_strategy, nb_runs, nb_generations, beta)):
	Estimates the probability that one mutant of the strategy with index index_invading_strategy will
fixate in a population where all members adopt strategy of index index_resident_strategy. nb_runs specifies
the number of (parallel) runs that shall be executed. The higher this number the better the estimation will be.
nb_generations indicates the total number of generations that a simulation will run. The simulation will
be stopped even if the population did not converge to a monomorphic state. beta represents the intensity of
selection.

	
	estimate_stationary_distribution(nb_runs, nb_generations, transitory, beta, mu):
	Estimates the stationary distribution. This method will run nb_runs (parallel) simulations for nb_generations
generations. After an initial transitory number of generations, this methods will count the number of times
each population state is visited. The final estimation will be an average of all the independent simulations.
beta represents the intensity of selection and mu the mutation rate.

	
	estimate_stationary_distribution_sparse(nb_runs, nb_generations, transitory, beta, mu):
	Same as above, but returns a Sparse Matrix, which is useful for very large state-spaces.

	
	estimate_strategy_distribution(nb_runs, nb_generations, transitory, beta, mu):
	When the state space is too large to be represented in a 64 bit integer, then we can no longer estimate
the stationary distribution with PairwiseComparisonNumerical. Instead, we can estimate directly the strategy
distribution using this method.

	
	evolve(nb_generations, beta, mu, init_state):
	This method will run a single simulation for nb_generations generations and return the
final state of the population. init_state is a numpy.array [https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array] containing the initial
counts of each strategy in the population.

	
	run(nb_generations, beta, mu, init_state):
	Same as evolve, but instead of just the last state, it will return all states the population went through.

	
	run(nb_generations, transient, beta, mu, init_state):
	Same as above, but will not return the first transient generations. This is useful, as long simulations can
occupy a lot of memory.

	
	run(nb_generations, transient, beta, init_state):
	This version of run assumes that mutation is 0.

Estimate fixation probabilities

Estimate stationary distributions

Warning

This method should not use for states spaces larger than the number which can be stored in
a 64 bit - int64_t - integer!

Estimate strategy distributions

Run a single simulation

Evolve a population for a given number of rounds

Note

Although at the moment egttools.numerical only contain methods to
study evolutionary dynamics in well-mixed populations, we have planned
to add support for simulations in complex networks in version 0.14.0,
and for multi-level selection in version 0.15.0.

Visualizing results

Populations with 2 strategies

The gradient of selection and stability in infinite populations

The gradient of selection in finite populations

Plotting the stationary distribution

Populations with 3 strategies

The Simplex2D class

The gradient of selection and stability in infinite populations

The gradient of selection and stationary distribution in finite populations

Populations with more than 3 strategies

Note

We will add support for plotting 3D simplexes soon (a pyramid).

Utility functions

References

	1

	Jorge M Pacheco, Francisco C Santos, Max O Souza, and Brian Skyrms. Evolutionary dynamics of collective action in N-person stag hunt dilemmas. Proceedings of the Royal Society B: Biological Sciences, 276(1655):315–321, 2009. doi:10.1098/rspb.2008.1126 [https://doi.org/10.1098/rspb.2008.1126].

	2

	Francisco C. Santos and Jorge M. Pacheco. Risk of collective failure provides an escape from the tragedy of the commons. Proceedings of the National Academy of Sciences, 108(26):10421–10425, 2011. doi:10.1073/pnas.1015648108 [https://doi.org/10.1073/pnas.1015648108].

	3

	Manfred Milinski, Ralf D Sommerfeld, Hans-Jürgen Krambeck, Floyd A Reed, and Jochem Marotzke. The collective-risk social dilemma and the prevention of simulated dangerous climate change. Proceedings of the National Academy of Sciences, 105(7):2291–2294, 2008.

	4

	Karl Sigmund. The Calculus of Selfishness. Princeton University Press, 2010. ISBN 978-0-691-14275-3. doi:10.1038/4641280a [https://doi.org/10.1038/4641280a].

	5

	Arne Traulsen, Martin A Nowak, and Jorge M Pacheco. Stochastic dynamics of invasion and fixation. Physical Review E, 74(1):011909, 2006.

	6

	Drew Fudenberg and Lorens A. Imhof. Imitation processes with small mutations. Journal of Economic Theory, 131(1):251–262, 2006. doi:10.1016/j.jet.2005.04.006 [https://doi.org/10.1016/j.jet.2005.04.006].

	7

	VÃ­tor V. Vasconcelos, Fernando P. Santos, Francisco C. Santos, and Jorge M. Pacheco. Stochastic Dynamics through Hierarchically Embedded Markov Chains. Physical Review Letters, 118(5):058301, 2017. doi:10.1103/PhysRevLett.118.058301 [https://doi.org/10.1103/PhysRevLett.118.058301].

	8

	Warren J Ewens. Mathematical population genetics. Springer Science+Business Media, LLC, second edition, 2012. ISBN 978-1-4419-1898-7. doi:10.1007/978-0-387-21822-9 [https://doi.org/10.1007/978-0-387-21822-9].

	9

	S Karlin and H M A Taylor. A first course in stochastic processes. Academic Press, New York, 2nd edn. edition, 1975.

Examples

The following examples give an idea of how to use EGTtools to model social dynamics:

	Hawk and dove dynamics
	Evolutionary Dynamics of the Hawk-Dove Game in Infinite populations
	Replicator equation

	Evolutionary Dynamics of the Hawk-Dove Game in Finite populations

	Monte Carlo simulations
	Estimate numerically the stationary distribution
	We can also plot a single run

	And can visualize what happens if we start several runs from random points in the simplex

	And we can also compare how far our approximations are from the analytical results

	Fixation probabilities and Invasion diagram
	Payoff matrix for a Normal Form Game

	Select which strategies we want to analyse

	Instantiate the Normal Form Game
	Now we instanciate the StochDynamics class to perform analytical calculations

	Plot invasion diagram

	2D Simplex plot
	Evolutionary dynamics in infinite populations
	Calculate gradients

	Finite populations
	Calculate gradients

	Calculate stationary distribution

	2D Simplex plot simplified
	Evolutionary dynamics in infinite populations
	Define payoff matrix

	Plot the trajectories from the stationary points

	Plot the gradient field using a streamplot

	Stochastic Dynamics in finite populations - Moran process with pairwise comparison
	Define the population size and the intensity of selection

	Plot the gradient field and the stationary distribution

	General examples
	The replicator dynamics
	Replicator dynamics in a 2-simplex (3 strategies)

	Stochastic Dynamics in Finite Populations - Moran process with pairwise comparison rule
	Stochastic dynamics in a 1-Simplex (only 2 strategies)

	Stochastic dynamics in a 2-simplex (3 strategies)

Projects using EGTtools

The EvoCRD [https://github.com/Socrats/EvoCRD] provide an example of use of EGTtools do
model dynamics in the Collective Risk Dilemma.

You can also find all these examples and a bit more here [https://github.com/Socrats/egt-tutorial] or launch
the notebooks with Binder [https://mybinder.org/v2/gh/Socrats/egt-tutorial/HEAD].

Evolutionary dynamics of Hawk-Dove

[1]:

import numpy as np
Plotting libraries
import matplotlib.pylab as plt
Magic function to make matplotlib inline; other style specs must come AFTER
%matplotlib inline
This enables high resolution PNGs.
%config InlineBackend.figure_formats = {'png', 'svg'}

Evolutionary Dynamics of the Hawk-Dove Game in Infinite populations

Replicator equation

The replicator equation represents the dynamics of competing individuals in a population. It normally found in the following form:

\(\dot{x}_i = x_i[f(x_i)-\sum_{i=1}^{n}x_if(x_i)]\),

where \(x_i\) represents the frequency of strategy \(i\) in the population, and \(f(x_i)\) is the fitness of strategy \(i\). This differencial equation, gives the gradient of selection, i.e., the strength with which the frequency of a certain strategy will increase or decrease. It may also be expressed in a more convenient matrix form:

\(G(x_i) = \dot{x}_i = x_i[(Ax)_i - x^TAx]\)

Where the matrix \(A\) is a payoff matrix with element \(A_{ij}\) representing the fitness of strategy \(i\) over strategy \(j\).

[2]:

from egttools.analytical import replicator_equation
from egttools.analytical.utils import (calculate_gradients, find_roots, check_replicator_stability_pairwise_games,)
from egttools.plotting import plot_gradients

[3]:

Payoff matrix
V = 2; D = 3; T = 1
A = np.array([
 [(V-D)/2, V],
 [0 , (V/2) - T],
])

Now we can calculate the gradient of selection of the replicator equation and plot it

[4]:

nb_points = 101
strategy_i = np.linspace(0, 1, num=nb_points, dtype=np.float64)

[5]:

Calculate gradient
gradient_function = lambda x: replicator_equation(x, A)
gradients = calculate_gradients(np.array((strategy_i, 1 - strategy_i)).T, gradient_function)

When we are analysing a pairwise game with the replicator equation, we can also calculate the roots of the system and their stability:

[6]:

roots = find_roots(gradient_function, 2, nb_initial_random_points=10, method="hybr")
stability = check_replicator_stability_pairwise_games(roots, A, atol_neg=1e-4, atol_pos=1e-4, atol_zero=1e-4)

[7]:

plot_gradients(gradients[:, 0], figsize=(5,4), fig_title="Hawk-Dove game replicator dynamics",
 xlabel="frequency of hawks", roots=roots, stability=stability)
plt.show()

[image: ../_images/examples_hawk_dove_dynamics_12_0.svg]

Evolutionary Dynamics of the Hawk-Dove Game in Finite populations

Now we are going to study the effect of having Finite populations. In general, finite populations introduce stochastic effects in the dynamics, also known as random drift \(~ 1/Z\), where \(Z\) is the size of the population. We can represent these dynamics, by adapting the replicator equation, which considers that individuals are sampled from an infinite population, and therefore selecting a member of strategy \(j\) does not reduce its frequency in the population. When the population
is finite, we make no longer assume a sampling with replacement, i.e., when an individual of strategy \(j\) is sampled, the fraction of members of that strategy is reduced, instead we must sample without replacement.

Here the fitness of an strategy \(i\) against strategy \(j\) directly depends on the size of the population:

\(f_i(x_i, Z) = \frac{x_i - 1}{Z-1} * A_{ii} + \frac{Z - x_i}{Z-1} * A_{ij}\)

For the selection dynamics, we use a Moran process (or birth-death process) with pair-wise comparison: at each step, 2 individuals, \(a\) and \(b\), are randomly sampled (without replacement) from the population, and their payoff is compared. The fermi equation gives the probability that individual \(a\) (selected for death) will copy the strategy of individual \(b\) (selected for birth):

\(p=[1 + e^{\beta(f_a-f_b)}]^{-1}\)

\(a\) will imitate \(b\) with probability \(p\), in any other case, the population state will not change. \(\beta\) indicates the selection strength and on the limit \(\beta \xrightarrow{} 0\) all strategies are immitated with equal probability.

[8]:

from egttools.analytical import StochDynamics

[9]:

Parameters and evolver
nb_strategies = 2; Z = 100; N = 2;
beta = 1
pop_states = np.arange(0, Z + 1, 1)
strategy_i = np.linspace(0, 1, num=Z + 1, dtype=np.float64)
evolver = StochDynamics(nb_strategies, A, Z)

<ipython-input-9-0ef21391ac1a>:6: DeprecationWarning: This class will soon be deprecated in favour of egttools.analytical.PairwiseComparison, which is implemented in c++ and runs faster, as well as, avoids precision issues that appeared in some limit cases.
 evolver = StochDynamics(nb_strategies, A, Z)

[10]:

gradients = np.array([evolver.gradient_selection(x, 0, 1, beta)
 for x in pop_states])

[11]:

plot_gradients(gradients, figsize=(4,4), fig_title="Hawk-Dove game stochastic dynamics",
 marker_facecolor='white',
 xlabel="frequency of hawks (k/Z)", marker="o", marker_size=20, marker_plot_freq=2)
plt.show()

[image: ../_images/examples_hawk_dove_dynamics_18_0.svg]

[12]:

evolver.mu = 0
stationary_SML = evolver.calculate_stationary_distribution(beta)
print("time spent as Hawk: {} & time spent as Dove: {}".format(*stationary_SML))

time spent as Hawk: 1.0 & time spent as Dove: 0.0

/Users/eliasfernandez/PycharmProjects/EGTtools/src/egttools/analytical/sed_analytical.py:687: RuntimeWarning: Some of the entries in the transition matrix are close to 1 (with a tolerance of 1e-11). This could result in more than one eigenvalue of magnitude 1 (the Markov Chain is degenerate), so please be careful when analysing the results.
 warn(

If we introduce mutations, i.e., there is a probability that individuals make an error, and adopt a different strategy instead of imitating the best, the dynamics may change. In this case, at each time step, players are selected for death/birth and their fitness is compared.

However, now, with probability \(\mu\) agent \(a\) will adopt a random strategy from the strategy space, and with probability \(1-\mu\) it will immitate \(b\) with probability \(p\). Therefore the probability of immitating \(b\) is \(p_{eff} = (1-\mu)*p\). On the limit \(\mu \xrightarrow{} 1\), all strategies are taken with equal probability. When \(\mu \xrightarrow{} 0\) we go back to the previous case, also known as small mutation limit (SML).

When mutation is small, we may assume that only the the states in which all population adopts a single strategy, also known as monomorphic states, are absorbing and stable. This is because, since there are no mutations, once the population reaches a monomorphic state, it will never leave. Such a simplification, allows us to reduce the number of states of the system, taking the Hawk-Dove game as an example, from Z + 1, to only 2.

Moreover, mixed equilibria are no longer stable in the SML. This occurs, since random drift, even if it takes an infinite ammount of time (please note that we are not looking at fixation times), will drive the population to one of the monomorphic states. For this reason, the SML assumption is only reasonable when we know that there are no mixed stable attractors in the studied system, which is not the case in the Hawk-Dove game. This explains why the results of the stationary distribution differ
from the previously calculated Nash equilibria.

Now we are going to calculate the stationary distribution again, but taking mutations into account.

[13]:

evolver.mu = 1e-3
stationary_with_mu = evolver.calculate_stationary_distribution(beta)

[14]:

fig, ax = plt.subplots(figsize=(5, 4))
fig.patch.set_facecolor('white')
lines = ax.plot(np.arange(0, Z+1)/Z, stationary_with_mu[::-1])
plt.setp(lines, linewidth=2.0)
ax.set_ylabel('stationary distribution',size=16)
ax.set_xlabel('k/Z',size=16)
ax.set_xlim(0, 1)
plt.show()

[image: ../_images/examples_hawk_dove_dynamics_24_0.svg]

[]:

Numerical simulations

[1]:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import os

[2]:

import egttools as egt

[3]:

egt.Random.init()
seed = egt.Random._seed

[4]:

Payoff matrix
V = 2; D = 3; T = 1
A = np.array([
 [(V-D)/2, V],
 [0 , (V/2) - T],
])

[5]:

A

[5]:

array([[-0.5, 2.],
 [0. , 0.]])

Estimate numerically the stationary distribution

You can use egttools to estimate numerically the stationary distribution. All you need to specify is the number of independent runs (simulations) that will be executed and afterwards averaged to obtain the final estimation; the length of each run (the number of generations); the transitory period (a number of generations that will not be taken into account to compute the stationary distribution - this transitory period will depend on the problem that is being studied); the intensity of
selection (\(\beta\)); and the probability of a mutation occuring (\(\mu\)).

[6]:

game = egt.games.NormalFormGame(1, A)

[7]:

Z = 100
x = np.arange(0, Z+1)/Z

[8]:

evolver = egt.numerical.PairwiseComparisonNumerical(Z, game, 1000000)

[9]:

Z = 100
x = np.arange(0, Z+1)/Z
evolver.pop_size = Z

[10]:

dist = evolver.estimate_stationary_distribution(10, int(1e6), int(1e3), 1, 1e-3)

[11]:

We need to reverse, since in this case we are starting from the case
where the number of Haws is 100%, because of how we map states
fig, ax = plt.subplots(figsize=(5, 4))
fig.patch.set_facecolor('white')
lines = ax.plot(x, list(reversed(dist)))
plt.setp(lines, linewidth=2.0)
ax.set_ylabel('stationary distribution',size=16)
ax.set_xlabel('k/Z',size=16)
ax.set_xlim(0, 1)
plt.show()

[image: ../_images/examples_normal_form_game_mc_simulations_12_0.png]

We can also plot a single run

Note: when looking at single runs bewhare that at the moment the outcome is returned in a dense array (this might change soon). This means that if you want to look at a large number of generations, you will need a lot of memmory. In the future, we will add the option to return only the last \(t\) generations.

[12]:

output = evolver.run(int(1e6), 1, 1e-3, [0, Z])

[13]:

fig, ax = plt.subplots(figsize=(5, 4))
ax.plot(output[:, 0]/Z)
ax.set_ylabel('k/Z')
ax.set_xlabel('generation')
ax.set_xscale('log')
plt.show()

[image: ../_images/examples_normal_form_game_mc_simulations_15_0.png]

And can visualize what happens if we start several runs from random points in the simplex

In this case, since we have a 1 dimensional simplex (only 2 strategies) you simply need to generate random integers. When you study problems with more dimensions, you will need to make use of egttools.sample_simplex and egttools.calculate_nb_states to be able to sample the simplex uniformly. All you would need to do is to draw random intergers uniformly in the range [0, total_nb_states) and then use egttools.sample_simplex to obtain the state in discrete barycentric coordinates.

[14]:

init_states = np.random.randint(0, Z+1, size=10, dtype=np.uint64)

[15]:

output = []
for i in range(10):
 output.append(evolver.run(int(1e6), 1, 1e-3,
 [init_states[i], Z - init_states[i]]))

[16]:

Plot each year's time series in its own facet
fig, ax = plt.subplots(figsize=(5, 4))

for run in output:
 ax.plot(run[:, 0]/Z, color='gray', linewidth=.1, alpha=0.6)
ax.set_ylabel('k/Z')
ax.set_xlabel('generation')
ax.set_xscale('log')

[image: ../_images/examples_normal_form_game_mc_simulations_19_0.png]

And we can also compare how far our approximations are from the analytical results

As you will be able to see in the results bellow, the approximation (for this quite simple problem) is good enough for most values of \(\beta\). However, the biggest errors occur when \(\beta\) is low, so bewhare that you might need to increase the number of generations or the number of independent runs (or both) in this case. In the future, we plan to have an adaptive method to stop the simulation when the approximation si good enough (e.g., when th KL-divergence between estimations of
the stationary distribution does not change below a certain tolerance after a certain number of generations).

[17]:

We do this for different betas
betas = np.logspace(-4, 1, 50)

[18]:

stationary_points = []
for i in range(len(betas)):
 stationary_points.append(evolver.estimate_stationary_distribution(30, int(1e6), int(1e3),
 betas[i], 1e-3))
stationary_points = np.asarray(stationary_points)

[19]:

Now we estimate the probability of Cooperation for each possible state
state_frequencies = np.arange(0, Z+1) / Z
coop_level = np.dot(state_frequencies, stationary_points.T)

[20]:

Finnally we do the same, but for the analytical results
from egttools.analytical import StochDynamics

[21]:

analytical_evolver = egt.analytical.StochDynamics(2, A, Z, mu=1e-3)

[22]:

stationary_points_analytical = []
for i in range(len(betas)):
 stationary_points_analytical.append(analytical_evolver.calculate_stationary_distribution(betas[i]))
stationary_points_analytical = np.asarray(stationary_points_analytical)

[23]:

Now we estimate the probability of Cooperation for each possible state
coop_level_analytical = np.dot(1 - state_frequencies, stationary_points_analytical.T)

Now we estimate the probability of Cooperation for each possible state
coop_level_analytical = np.dot(1 - state_frequencies, stationary_points_analytical.T)

[24]:

from sklearn.metrics import mean_squared_error

[25]:

mse = mean_squared_error(1 - coop_level_analytical, coop_level)

[26]:

import seaborn as sns

[27]:

Finally, we plot and compare visually (and check how much error we get)
sns.set_context("notebook", font_scale=1.25, rc={"lines.linewidth": 3})
fig, ax = plt.subplots(figsize=(7, 5))
ax.scatter(betas, 1 - coop_level_analytical, marker='x', label="analytical")
ax.scatter(betas, coop_level, marker='o', label="numerical")
ax.text(0.01, 0.5, 'MSE = {0:.3e}'.format(mse), style='italic',
 bbox={'facecolor': 'red', 'alpha': 0.5, 'pad': 10})
ax.legend(bbox_to_anchor=(0.5, 0., 0.5, 0.5))
ax.set_xlabel(r'β', fontsize=15)
ax.set_ylabel('Frequency of Doves', fontsize=15)
ax.set_xscale('log')
sns.despine()
plt.show()

[image: ../_images/examples_normal_form_game_mc_simulations_31_0.png]

[]:

Fixation probabilities and Invasion diagram

In this notebook we analyse the Stochastic dynamics of (pairwise) social imitation under the small mutation limit (SML)

[1]:

import os

[2]:

import numpy as np
import matplotlib.pyplot as plt
import egttools as egt
%matplotlib inline

[3]:

egt.Random.init()
seed = egt.Random._seed

Payoff matrix for a Normal Form Game

Here we will analyse a Normal Form game, so we need to first define a payoff matrix

[4]:

T=4; R=2; P=1; S=0
A = np.array([
 [P, T],
 [S, R]
])

Select which strategies we want to analyse

We can add all the strategies to a list and pass it to the Game object

[5]:

strategies = [egt.behaviors.NormalForm.TwoActions.Cooperator(),
 egt.behaviors.NormalForm.TwoActions.Defector(),
 egt.behaviors.NormalForm.TwoActions.TFT(),
 egt.behaviors.NormalForm.TwoActions.Pavlov(),
 egt.behaviors.NormalForm.TwoActions.Random(),
 egt.behaviors.NormalForm.TwoActions.GRIM()]

[6]:

strategy_labels = [strategy.type().replace("NFGStrategies::", '') for strategy in strategies]

[7]:

strategy_labels

[7]:

['AllC', 'AllD', 'TFT', 'Pavlov', 'Random', 'GRIM']

Instantiate the Normal Form Game

Now we can instanciate the Game and pass both the strategies and the payoff matrix

[8]:

game = egt.games.NormalFormGame(100, A, strategies)

Now we instanciate the StochDynamics class to perform analytical calculations

We pass the expected payoffs calculated by the NormalFormGame class

[9]:

Z= 100; beta=1
evolver = egt.analytical.PairwiseComparison(Z, game)

[10]:

transition_matrix,fixation_probabilities = evolver.calculate_transition_and_fixation_matrix_sml(beta)
stationary_distribution = egt.utils.calculate_stationary_distribution(transition_matrix.transpose())

Plot invasion diagram

[11]:

fig, ax = plt.subplots(figsize=(5, 5), dpi=150)
G = egt.plotting.draw_invasion_diagram(strategy_labels,
 1/Z, fixation_probabilities, stationary_distribution,
 node_size=600,
 font_size_node_labels=8,
 font_size_edge_labels=8,
 font_size_sd_labels=8,
 edge_width=1,
 min_strategy_frequency=0.00001,
 ax=ax)
plt.axis('off')
plt.show() # display

[image: ../_images/examples_plot_invasion_diagram_16_0.png]

[]:

Plot the evolutionary dynamics in a 2-Simplex

[1]:

import numpy as np
import matplotlib.pyplot as plt

%matplotlib inline

[2]:

import egttools as egt

[3]:

from egttools.plotting.helpers import (xy_to_barycentric_coordinates,
 barycentric_to_xy_coordinates,
 find_roots_in_discrete_barycentric_coordinates,
 calculate_stability,
)
from egttools.analytical.utils import (find_roots, check_replicator_stability_pairwise_games,)
from egttools.helpers.vectorized import vectorized_replicator_equation, vectorized_barycentric_to_xy_coordinates

Evolutionary dynamics in infinite populations

In infinite populations the dynamics are given by the replicator equation. Following we calculate the gradients for all the points in a grid and plot them in a 2-simplex using the Simplex2D class.

We will also be plotting in the simplex the stationary points. We will use black circle to represent stable equilibrium and white circles to represent unstable ones. The arrows indicate the direction of the selective pressure.

Calculate gradients

[4]:

payoffs = np.array([[1, 0, 0],
 [0, 2, 0],
 [0, 0, 3]])

[5]:

simplex = egt.plotting.Simplex2D()

[6]:

v = np.asarray(xy_to_barycentric_coordinates(simplex.X, simplex.Y, simplex.corners))

[7]:

results = vectorized_replicator_equation(v, payoffs)
xy_results = vectorized_barycentric_to_xy_coordinates(results, simplex.corners)
Ux = xy_results[:, :, 0].astype(np.float64)
Uy = xy_results[:, :, 1].astype(np.float64)

[8]:

calculate_gradients = lambda u: egt.analytical.replicator_equation(u, payoffs)

roots = find_roots(gradient_function=calculate_gradients,
 nb_strategies=payoffs.shape[0],
 nb_initial_random_points=100)
roots_xy = [barycentric_to_xy_coordinates(root, corners=simplex.corners) for root in roots]

stability = check_replicator_stability_pairwise_games(roots, payoffs)

[9]:

type_labels = ['A', 'B', 'C']

[10]:

fig, ax = plt.subplots(figsize=(10,8))

plot = (simplex.add_axis(ax=ax)
 .apply_simplex_boundaries_to_gradients(Ux, Uy)
 .draw_triangle()
 .draw_stationary_points(roots_xy, stability)
 .add_vertex_labels(type_labels)
 .draw_trajectory_from_roots(lambda u, t: egt.analytical.replicator_equation(u, payoffs),
 roots,
 stability,
 trajectory_length=15,
 linewidth=1,
 step=0.01,
 color='k', draw_arrow=True, arrowdirection='right', arrowsize=30, zorder=4, arrowstyle='fancy')
 .draw_scatter_shadow(lambda u, t: egt.analytical.replicator_equation(u, payoffs), 300, color='gray', marker='.', s=0.1)
)

ax.axis('off')
ax.set_aspect('equal')

plt.xlim((-.05,1.05))
plt.ylim((-.02, simplex.top_corner + 0.05))
plt.show()

[image: ../_images/examples_plot_simplex_13_0.png]

[11]:

fig, ax = plt.subplots(figsize=(10,8))

plot = (simplex.add_axis(ax=ax)
 .apply_simplex_boundaries_to_gradients(Ux, Uy)
 .draw_triangle()
 .draw_gradients(zorder=0)
 .add_colorbar()
 .draw_stationary_points(roots_xy, stability)
 .add_vertex_labels(type_labels)
 .draw_trajectory_from_roots(lambda u, t: egt.analytical.replicator_equation(u, payoffs),
 roots,
 stability,
 trajectory_length=15,
 linewidth=1,
 step=0.01,
 color='k', draw_arrow=True, arrowdirection='right', arrowsize=30, zorder=4, arrowstyle='fancy')
 .draw_scatter_shadow(lambda u, t: egt.analytical.replicator_equation(u, payoffs), 300, color='gray', marker='.', s=0.1, zorder=0)
)

ax.axis('off')
ax.set_aspect('equal')

plt.xlim((-.05, 1.05))
plt.ylim((-.02, simplex.top_corner + 0.05))
plt.show()

[image: ../_images/examples_plot_simplex_14_0.png]

Finite populations

In finite populations we will model the dynamics using a Moran process. The calculation of the gradients is implemented in EGTtools in the StochDynamics class. In this case, since we want to calculate the gradient at any point in the simplex, we will use the full_gradient_selection method

Calculate gradients

[12]:

Z = 100
beta = 1
mu = 1e-3

[13]:

simplex = egt.plotting.Simplex2D(discrete=True, size=Z, nb_points=Z+1)

[14]:

v = np.asarray(xy_to_barycentric_coordinates(simplex.X, simplex.Y, simplex.corners))

[15]:

v_int = np.floor(v * Z).astype(np.int64)

[16]:

evolver = egt.analytical.StochDynamics(3, payoffs, Z)

<ipython-input-16-ffdd52efb7d6>:1: DeprecationWarning: This class will soon be deprecated in favour of egttools.analytical.PairwiseComparison, which is implemented in c++ and runs faster, as well as, avoids precision issues that appeared in some limit cases.
 evolver = egt.analytical.StochDynamics(3, payoffs, Z)

[17]:

result = np.asarray([[evolver.full_gradient_selection(v_int[:, i, j], beta) for j in range(v_int.shape[2])] for i in range(v_int.shape[1])]).swapaxes(0, 1).swapaxes(0, 2)

[18]:

xy_results = vectorized_barycentric_to_xy_coordinates(result, simplex.corners)

Ux = xy_results[:, :, 0].astype(np.float64)
Uy = xy_results[:, :, 1].astype(np.float64)

[19]:

calculate_gradients = lambda u: Z*evolver.full_gradient_selection(u, beta)

roots = find_roots_in_discrete_barycentric_coordinates(calculate_gradients, Z, nb_interior_points=5151, atol=1e-1)
roots_xy = [barycentric_to_xy_coordinates(x, simplex.corners) for x in roots]

stability = calculate_stability(roots, calculate_gradients)

Calculate stationary distribution

We can also plot the stationary distribution inside the simplex. It will give us an idea on where our population is going to spend most of the time

[20]:

evolver.mu = 1e-3
sd = evolver.calculate_stationary_distribution(beta)

[21]:

fig, ax = plt.subplots(figsize=(15,10))

plot = (simplex.add_axis(ax=ax)
 .apply_simplex_boundaries_to_gradients(Ux, Uy)
 .draw_gradients(zorder=5)
 .add_colorbar()
 .draw_stationary_points(roots_xy, stability, zorder=11)
 .add_vertex_labels(type_labels)
 .draw_stationary_distribution(sd, vmax=0.0001, alpha=0.5, edgecolors='gray', cmap='binary', shading='gouraud', zorder=0)
 .draw_trajectory_from_roots(lambda u, t: Z*evolver.full_gradient_selection_without_mutation(u, beta),
 roots,
 stability,
 trajectory_length=30,
 linewidth=1,
 step=0.001,
 color='k', draw_arrow=True, arrowdirection='right', arrowsize=30, zorder=10, arrowstyle='fancy')
)

ax.axis('off')
ax.set_aspect('equal')

plt.xlim((-.05,1.05))
plt.ylim((-.02, simplex.top_corner + 0.05))
plt.show()

[image: ../_images/examples_plot_simplex_28_0.png]

[22]:

fig, ax = plt.subplots(figsize=(10,8))

plot = (simplex.add_axis(ax=ax)
 .apply_simplex_boundaries_to_gradients(Ux, Uy)
 .draw_stationary_points(roots_xy, stability)
 .add_vertex_labels(type_labels)
 .draw_stationary_distribution(sd, vmax=0.0001, alpha=0.5, edgecolors='gray', cmap='binary', shading='gouraud')
 .draw_trajectory_from_roots(lambda u, t: Z*evolver.full_gradient_selection_without_mutation(u, beta),
 roots,
 stability,
 trajectory_length=30,
 linewidth=1,
 step=0.001,
 color='k', draw_arrow=True, arrowdirection='right', arrowsize=30, zorder=4, arrowstyle='fancy')
)

ax.axis('off')
ax.set_aspect('equal')

plt.xlim((-.05,1.05))
plt.ylim((-.02, simplex.top_corner + 0.05))
plt.show()

[image: ../_images/examples_plot_simplex_29_0.png]

Simplified 2-Simplex plot

In the Plot the evolutionary dynamics in a 2-Simplex example, we show how to use the Simplex2D class to visualize dynamics on a 2 Simplex using arbitrary gradient function (although the examples were shown only for the replicator equation and the Moran process defined in a finite population of strategies).

However, when we want to use the replicator_equation and StochDynamics provided in egttools, then we can simplify the plotting process by using two utility functions: egttools.plotting.plot_replicator_dynamics_in_simplex and egttools.plotting.plot_pairwise_comparison_rule_dynamics_in_simplex.

[1]:

import numpy as np
import matplotlib.pyplot as plt

%matplotlib inline

[2]:

from egttools.plotting.simplified import plot_replicator_dynamics_in_simplex, plot_pairwise_comparison_rule_dynamics_in_simplex_without_roots
from egttools.utils import calculate_stationary_distribution

Evolutionary dynamics in infinite populations

In infinite populations the dynamics are given by the replicator equation. Following we calculate the gradients for all the points in a grid and plot them in a 2-simplex using the Simplex2D class.

We will also be plotting in the simplex the stationary points. We will use black circle to represent stable equilibrium and white circles to represent unstable ones. The arrows indicate the direction of the selective pressure.

Define payoff matrix

[3]:

payoffs = np.array([[1, 0, 0],
 [0, 2, 0],
 [0, 0, 3]])

[4]:

type_labels = ['A', 'B', 'C']

Plot the trajectories from the stationary points

[5]:

fig, ax = plt.subplots(figsize=(10,8))

simplex, gradient_function, roots, roots_xy, stability = plot_replicator_dynamics_in_simplex(payoffs,
 nb_of_initial_points_for_root_search=100,
 ax=ax)

plot = (simplex.draw_triangle()
 .add_vertex_labels(type_labels)
 .draw_stationary_points(roots_xy, stability)
 .draw_trajectory_from_roots(gradient_function,
 roots,
 stability,
 trajectory_length=15,
 linewidth=1,
 step=0.01,
 color='k', draw_arrow=True, arrowdirection='right', arrowsize=30, zorder=4, arrowstyle='fancy')
 .draw_scatter_shadow(gradient_function, 300, color='gray', marker='.', s=0.1)
)

ax.axis('off')
ax.set_aspect('equal')

plt.xlim((-.05,1.05))
plt.ylim((-.02, simplex.top_corner + 0.05))
plt.show()

[image: ../_images/examples_plot_simplex_simplified_10_0.png]

Plot the gradient field using a streamplot

[6]:

fig, ax = plt.subplots(figsize=(10,8))

plot = (simplex.add_axis(ax=ax)
 .draw_triangle()
 .draw_gradients(zorder=0)
 .add_colorbar()
 .add_vertex_labels(type_labels)
 .draw_stationary_points(roots_xy, stability)
 .draw_trajectory_from_roots(gradient_function,
 roots,
 stability,
 trajectory_length=15,
 linewidth=1,
 step=0.01,
 color='k', draw_arrow=True, arrowdirection='right', arrowsize=30, zorder=4, arrowstyle='fancy')
 .draw_scatter_shadow(gradient_function, 300, color='gray', marker='.', s=0.1, zorder=0)
)

ax.axis('off')
ax.set_aspect('equal')

plt.xlim((-.05,1.05))
plt.ylim((-.02, simplex.top_corner + 0.05))
plt.show()

[image: ../_images/examples_plot_simplex_simplified_12_0.png]

Stochastic Dynamics in finite populations - Moran process with pairwise comparison

In finite populations we will model the dynamics using a Moran process. The calculation of the gradients is implemented in EGTtools in the StochDynamics class. In this case, since we want to calculate the gradient at any point in the simplex, we will use the full_gradient_selection method

Define the population size and the intensity of selection

[7]:

Z = 100
beta = 1
mu = 1/Z

Plot the gradient field and the stationary distribution

We can also plot the stationary distribution inside the simplex. It will give us an idea on where our population is going to spend most of the time

[8]:

fig, ax = plt.subplots(figsize=(15,10))

simplex, gradient_function, game, evolver = plot_pairwise_comparison_rule_dynamics_in_simplex_without_roots(payoff_matrix=payoffs, population_size=Z, beta=beta, ax=ax)

transitions = evolver.calculate_transition_matrix(beta=beta, mu=mu)
sd = calculate_stationary_distribution(transitions.transpose())

plot = (simplex.add_axis(ax=ax)
 # .draw_triangle()
 .draw_gradients(zorder=5)
 .add_colorbar()
 .add_vertex_labels(type_labels)
 .draw_stationary_distribution(sd, alpha=1, edgecolors='gray', cmap='binary', shading='gouraud', zorder=0)
)

ax.axis('off')
ax.set_aspect('equal')

plt.xlim((-.05,1.05))
plt.ylim((-.02, simplex.top_corner + 0.05))
plt.show()

[image: ../_images/examples_plot_simplex_simplified_18_0.png]

[]:

Examples of use of EGTtools

This notebook is aimed at displaying some of the main examples of use of Evolutionary Game Theoretical models and methods implemented in EGTtools.

The replicator dynamics

The replicator equation is one of the fundamental descriptors of evolutionary dynamics. It consists on the following set of coupled ordinary diferencial equations:

\[\dot x_{i} = x_{i} \left[f_i(\mathbf{x})-\sum_{j=1}^{N}{x_{j}f_j(x)}\right]\]

This equation can also be expressed in the following vector form for symmetrical 2-player games:

\[\dot x_{i} = x_{i} \left[(A \mathbf{x})_{i} - \mathbf{x} A \mathbf{x}\right]\]

This last form is implemented in EGTtools in egttools.analytical.replicator_equation. This function takes as input a vector \(\mathbf{x}\) containing the frequencies of each of the strategies (or types) in the population, and a matrix \(A\) which contains the payoff of each strategy when interacting against any other strategy in the population. It will output the gradient of selection, i.e., the change in the population at the next time-step.

You can feed this function directly to scypy odeint function if you would like to integrate it and calculate the state of the population at a given point in time.

You can also plot the gradient of selection to visually identify the roots of the dynamical system:

[1]:

import numpy as np
import egttools as egt
import matplotlib.pylab as plt
%matplotlib inline

[2]:

Payoff matrix
V = 2; D = 3; T = 1
A = np.array([
 [(V-D)/2, V],
 [0 , (V/2) - T],
])

We can calculate the gradients in the following way:

[3]:

nb_points = 101
strategy_i = np.linspace(0, 1, num=nb_points, dtype=np.float64)

[4]:

Calculate gradient
gradient_function = lambda x: egt.analytical.replicator_equation(x, A)
gradients = egt.analytical.utils.calculate_gradients(np.array((strategy_i, 1 - strategy_i)).T,
 gradient_function)

When we are analysing a pairwise game with the replicator equation, we can also calculate the roots of the system and their stability:

[7]:

roots = egt.analytical.utils.find_roots(gradient_function, 2,
 nb_initial_random_points=100, atol=1e-7, tol_close_points=1e-4,
 method="hybr")
stability = egt.analytical.utils.check_replicator_stability_pairwise_games(roots, A, atol_neg=1e-4, atol_pos=1e-4, atol_zero=1e-4)

[10]:

egt.plotting.indicators.plot_gradients(gradients[:, 0],
 xlabel="frequency of hawks",
 roots=roots, stability=stability)

[10]:

<AxesSubplot:xlabel='frequency of hawks', ylabel='gradient of selection (G)'>

[image: ../_images/examples_examples_of_use_9_1.png]

[11]:

Calculate gradient
gradient_function = lambda x: egt.numerical.numerical.replicator_equation(x, A)
gradients = egt.analytical.utils.calculate_gradients(np.array((strategy_i, 1 - strategy_i)).T,
 gradient_function)

[14]:

roots = egt.analytical.utils.find_roots(gradient_function, 2,
 nb_initial_random_points=100, atol=1e-7, tol_close_points=1e-4,
 method="hybr")
stability = egt.analytical.utils.check_replicator_stability_pairwise_games(roots, A, atol_neg=1e-4, atol_pos=1e-4, atol_zero=1e-4)

[16]:

egt.plotting.indicators.plot_gradients(gradients[:, 0],
 xlabel="frequency of hawks")

[16]:

<AxesSubplot:xlabel='frequency of hawks', ylabel='gradient of selection (G)'>

[image: ../_images/examples_examples_of_use_12_1.png]

It is also possible to make the same plot without showing the stationary points. This is the indicated use when plotting the gradient of stochastic dynamics in finite populations:

[7]:

egt.plotting.indicators.plot_gradients(gradients[:, 0], xlabel="frequency of hawks", marker='o', figsize=(6,5))

[7]:

<AxesSubplot:xlabel='frequency of hawks', ylabel='gradient of selection (G)'>

[image: ../_images/examples_examples_of_use_14_1.png]

Replicator dynamics in a 2-simplex (3 strategies)

When we have 3 strategies, we can visualize the replicator dynamics over a 2-simples (a triangle). This can be easily achieved in EGTtools through the Simplex2D class:

[8]:

from egttools.plotting.simplified import plot_replicator_dynamics_in_simplex

[9]:

Payoff matrix
V = 2; D = 3; T = 1; F = 2; S = 1
A = np.array([
 [(V-D)/2, V, 0], # Hawk
 [0 , (V/2) - T, F], # Dove
 [0 , S, 0] # Human
])
type_labels = ['Hawk', 'Dove', 'Human']

[10]:

fig, ax = plt.subplots(figsize=(10,8))

simplex, gradient_function, roots, roots_xy, stability = plot_replicator_dynamics_in_simplex(A, ax=ax)

plot = (simplex.draw_triangle()
 .add_vertex_labels(type_labels, epsilon_bottom=0.1)
 .draw_stationary_points(roots_xy, stability)
 .draw_gradients(zorder=0)
 .add_colorbar()
 .draw_scatter_shadow(gradient_function, 100, color='gray', marker='.', s=0.1)
)

ax.axis('off')
ax.set_aspect('equal')

plt.xlim((-.05,1.05))
plt.ylim((-.02, simplex.top_corner + 0.05))

[10]:

(-0.02, 0.9160254037844386)

[image: ../_images/examples_examples_of_use_18_1.png]

Stochastic Dynamics in Finite Populations - Moran process with pairwise comparison rule

Finite populations introduce stochastic effects. We can represent these dynamics, by adapting the replicator equation, which considers that individuals are sampled from an infinite population, and therefore selecting a member of strategy \(j\) does not reduce its frequency in the population. When the population is finite, we may no longer assume a sampling with replacement, i.e., when an individual of strategy \(j\) is sampled, the fraction of members of that strategy is reduced, instead
we must sample without replacement.

Here the fitness of an strategy \(i\) against strategy \(j\) directly depends on the size of the population:

\(f_i(x_i, Z) = \frac{x_i - 1}{Z-1} * A_{ii} + \frac{Z - x_i}{Z-1} * A_{ij}\)

For the selection dynamics, we use a Moran process (or birth-death process) with pair-wise comparison: at each step, 2 individuals, \(a\) and \(b\), are randomly sampled (without replacement) from the population, and their payoff is compared. The fermi equation gives the probability that individual \(a\) (selected for death) will copy the strategy of individual \(b\) (selected for birth):

\(p=[1 + e^{\beta(f_a-f_b)}]^{-1}\)

\(a\) will imitate \(b\) with probability \(p\), in any other case, the population state will not change. \(\beta\) indicates the selection strength and on the limit \(\beta \xrightarrow{} 0\) all strategies are immitated with equal probability.

[11]:

Z = 100
beta = 1
mu = 1/Z

Stochastic dynamics in a 1-Simplex (only 2 strategies)

Here we do not plot the roots, since the system is discrete and the gradient might jump to a negative value without becoming zero. Yet, we can still observe that the shape of the gradient is almost identical to the replicator dynamics.

[12]:

from egttools.analytical import PairwiseComparison

[13]:

Payoff matrix
V = 2; D = 3; T = 1
A = np.array([
 [(V-D)/2, V],
 [0 , (V/2) - T],
])

[14]:

Parameters and evolver
nb_strategies = 2; Z = 100; N = 2;
beta = 1
pop_states = np.arange(0, Z + 1, 1)
game = egt.games.Matrix2PlayerGameHolder(nb_strategies, A)
evolver = PairwiseComparison(Z, game)

[15]:

gradients = np.array([evolver.calculate_gradient_of_selection(beta, np.array([x, Z-x])) for x in range(Z + 1)])

[16]:

egt.plotting.indicators.plot_gradients(gradients[:, 0], figsize=(6,5),
 marker_facecolor='white',
 xlabel="frequency of hawks (k/Z)", marker="o", marker_size=30, marker_plot_freq=2)

[16]:

<AxesSubplot:xlabel='frequency of hawks (k/Z)', ylabel='gradient of selection (G)'>

[image: ../_images/examples_examples_of_use_26_1.png]

Stochastic dynamics in a 2-simplex (3 strategies)

Since it is not so simple to formally define the roots of a discrete system, we can make use of the stationary distribution of the Markov chain as an indication of where they are situated, and of how likely is the system to spend time in these equilibria.

[17]:

from egttools.plotting.simplified import plot_pairwise_comparison_rule_dynamics_in_simplex_without_roots

[18]:

Payoff matrix
V = 2; D = 3; T = 1; F = 2; S = 1
A = np.array([
 [(V-D)/2, V, 0], # Hawk
 [0 , (V/2) - T, F], # Dove
 [0 , S, 0] # Human
])
type_labels = ['Hawk', 'Dove', 'Human']

[19]:

fig, ax = plt.subplots(figsize=(12,10))

simplex, gradient_functionm, game, evolver = plot_pairwise_comparison_rule_dynamics_in_simplex_without_roots(payoff_matrix=A,
 group_size=2,
 population_size=Z,
 beta=beta,
 ax=ax)

transitions = evolver.calculate_transition_matrix(beta=beta, mu=mu)
sd = egt.utils.calculate_stationary_distribution(transitions.transpose())

plot = (simplex
 .draw_triangle()
 .add_vertex_labels(type_labels, epsilon_bottom=0.1, epsilon_top=0.03)
 .draw_stationary_distribution(sd, alpha=1, shrink=0.5,
 edgecolors='gray', cmap='binary', shading='gouraud', zorder=0)
 .draw_gradients(zorder=2, linewidth=1.5)
 .add_colorbar(shrink=0.5)
)

ax.axis('off')
ax.set_aspect('equal')

plt.xlim((-.05,1.05))
plt.ylim((-.02, simplex.top_corner + 0.05))

[19]:

(-0.02, 0.9160254037844386)

[image: ../_images/examples_examples_of_use_30_1.png]

[]:

egttools

The egttools package implements methods to study evolutionary dynamics.

Functions

	calculate_nb_states

	Calculates the number of states (combinations) of the members of a group in a subgroup.

	calculate_state

	This function converts a vector containing counts into an index.

	calculate_strategies_distribution

	Calculates the average frequency of each strategy available in the population given the stationary distribution.

	sample_simplex

	Transforms a state index into a vector.

	sample_unit_simplex

	Samples uniformly at random the unit simplex with nb_strategies dimensionse.

Classes

	Random

	Random seed generator.

	egttools.analytical

	API reference documentation for sed_analytical submodule.

	egttools.behaviors

	API reference documentation for behaviors submodule.

	egttools.datastructures

	Custom data structures used to store data from numerical simulations.

	egttools.distributions

	Helpful implementations of stochastic distributions.

	egttools.games

	API reference documentation for the games submodule.

	egttools.helpers

	Set of helper functions that can be useful for obtaining analytical results, simulations or for plotting.

	egttools.numerical

	The numerical module contains functions and classes to simulate evolutionary dynamics in finite populations.

	egttools.plotting

	API reference documentation for the plotting submodule.

	egttools.utils

	This python module contains some utility functions to find saddle points and plot gradients in 2 player, 2 strategy games.

egttools.calculate_nb_states

	
calculate_nb_states(group_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → object [https://docs.python.org/3/library/functions.html#object]

	Calculates the number of states (combinations) of the members of a group in a subgroup.

It can be used to calculate the maximum number of states in a discrete simplex.

The implementation of this method follows the stars and bars algorithm (see Wikipedia).

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group (maximum number of players/elements that can adopt each possible strategy).

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies that can be assigned to players.

	Returns

	Number of states (possible combinations of strategies and players).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.numerical.calculate_state, egttools.numerical.sample_simplex

egttools.calculate_state

	
calculate_state()

	This function converts a vector containing counts into an index.

This method was copied from @Svalorzen.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum bin size (it can also be the population size).

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – The vector to convert from simplex coordinates to index.

	Returns

	The unique index in [0, egttools.calculate_nb_states(group_size, len(group_composition))
representing the n-dimensional simplex.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.sample_simplex, egttools.calculate_nb_states

This function converts a vector containing counts into an index.

This method was copied from @Svalorzen.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum bin size (it can also be the population size).

	group_composition (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]) – The vector to convert from simplex coordinates to index.

	Returns

	The unique index in [0, egttools.calculate_nb_states(group_size, len(group_composition))
representing the n-dimensional simplex.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.sample_simplex, egttools.calculate_nb_states

egttools.calculate_strategies_distribution

	
calculate_strategies_distribution(pop_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int], stationary_distribution: scipy.sparse.csr_matrix[numpy.float64]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Calculates the average frequency of each strategy available in the population given the stationary distribution.

It expects that the stationary_distribution is in sparse form.

	Parameters

	
	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies that can be assigned to players.

	stationary_distribution (scipy.sparse.csr_matrix) – A sparse matrix which contains the stationary distribution (the frequency with which the evolutionary system visits each
stationary state).

	Returns

	Average frequency of each strategy in the stationary evolutionary system.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.sample_simplex, egttools.numerical.calculate_nb_states, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.calculate_nb_states, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse

egttools.sample_simplex

	
sample_simplex(index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]

	Transforms a state index into a vector.

	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – State index.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies.

	Returns

	Vector with the sampled state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.calculate_nb_states

egttools.sample_unit_simplex

	
sample_unit_simplex(nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Samples uniformly at random the unit simplex with nb_strategies dimensionse.

	Parameters

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies.

	Returns

	Vector with the sampled state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.calculate_nb_states, egttools.numerical.sample_simplex

egttools.Random

	
class Random

	Bases: pybind11_object

Random seed generator.

Methods

	generate

	Generates a random seed.

	init

	Overloaded function.

	seed

	This static methods changes the seed of egttools.Random.

	
__init__(*args, **kwargs)

	

	
__new__(**kwargs)

	

	
static generate() → int [https://docs.python.org/3/library/functions.html#int]

	Generates a random seed.

The generated seed can be used to seed other pseudo-random generators,
so that the initial state of the simulation can always be tracked and
the simulation can be reproduced. This is very important both for debugging
purposes as well as for scientific research. However, this approach should
NOT be used in any cryptographic applications, it is NOT safe.

	Returns

	A random seed which can be used to seed new random generators.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
static init(*args, **kwargs)

	Overloaded function.

	init() -> egttools.numerical.numerical.Random

This static method initializes the random seed.

This static method initializes the random seed generator from random_device
and returns an instance of egttools.Random which is used
to seed the random generators used across egttools.

	egttools.Random
	An instance of the random seed generator.

	init(seed: int) -> egttools.numerical.numerical.Random

This static method initializes the random seed generator from seed.

This static method initializes the random seed generator from seed
and returns an instance of egttools.Random which is used
to seed the random generators used across egttools.

	seedint
	Integer value used to seed the random generator.

	egttools.Random
	An instance of the random seed generator.

	
static seed(seed: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	This static methods changes the seed of egttools.Random.

	Parameters

	int – The new seed for the egttools.Random module which is used to seed
every other pseudo-random generation in the egttools package.

egttools.analytical

API reference documentation for sed_analytical submodule.

Functions

	replicator_equation

	Produces the discrete time derivative of the replicator dynamics

	replicator_equation_n_player

	Calculates the gradient of the replicator dynamics given the current population state.

Classes

	PairwiseComparison

	A class containing methods to study analytically the evolutionary dynamics using the Pairwise comparison rule.

	StochDynamics

	A class containing methods to calculate the stochastic evolutionary dynamics of a population.

	egttools.analytical.sed_analytical

	This python module contains the necessary functions to calculate analytically the evolutionary dynamics in Infinite and Finite populations on 2-player games.

	egttools.analytical.utils

	

egttools.analytical.replicator_equation

	
replicator_equation(x, payoffs)

	Produces the discrete time derivative of the replicator dynamics

This only works for 2-player games.

	Parameters

	
	x (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,1]]) – array containing the frequency of each strategy in the population.

	payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]) – payoff matrix

	Returns

	time derivative of x

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.analytical.StochDynamics, egttools.numerical.PairwiseComparisonNumerical

egttools.analytical.replicator_equation_n_player

	
replicator_equation_n_player(frequencies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]], payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]], group_size: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Calculates the gradient of the replicator dynamics given the current population state.

	Parameters

	
	frequencies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Vector of frequencies of each strategy in the population (it must have
shape=(nb_strategies,)

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A payoff matrix containing the payoff of each row strategy for each
possible group configuration, indicated by the column index.
The matrix must have shape (nb_strategies, nb_group_configurations).

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group

	Returns

	A vector with the gradient for each strategy. The vector has shape (nb_strategies,)

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.analytical.replicator_equation, egttools.numerical.PairwiseComparison, egttools.numerical.PairwiseComparisonNumerical, egttools.analytical.StochDynamics, egttools.games.AbstractGame

egttools.analytical.PairwiseComparison

	
class PairwiseComparison(self: egttools.numerical.numerical.PairwiseComparison, population_size: int [https://docs.python.org/3/library/functions.html#int], game: egttools.numerical.numerical.games.AbstractGame)

	Bases: pybind11_object

A class containing methods to study analytically the evolutionary dynamics using the Pairwise comparison rule.

This class defines methods to compute fixation probabilities, transition matrices in the Small Mutation
Limit (SML), gradients of selection, and the full transition matrices of the system when considering
mutation > 0.

	Parameters

	
	population_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	game (egttools.games.AbstractGame) – A game object which must implement the abstract class egttools.games.AbstractGame.
This game will contain the expected payoffs for each strategy in the game, or at least
a method to compute it, and a method to calculate the fitness of each strategy for a given
population state.

See also

egttools.numerical.PairwiseComparisonNumerical, egttools.analytical.StochDynamics, egttools.games.AbstractGame

Note

Analytical computations should be avoided for problems with very large state spaces.
This means very big populations with many strategies. The bigger the state space, the
more memory and time these methods will require!

Also, for now it is not possible to update the game without having to instantiate PairwiseComparison
again. Hopefully, this will be fixed in the future.

Methods

	calculate_fixation_probability

	Calculates the fixation probability of an invading strategy in a population o resident strategy.

	calculate_gradient_of_selection

	Calculates the gradient of selection without mutation for the given state.

	calculate_transition_and_fixation_matrix_sml

	Calculates the transition matrix of the reduced Markov Chain that emerges when assuming SML.

	calculate_transition_matrix

	Computes the transition matrix of the Markov Chain which defines the population dynamics.

	game

	

	nb_states

	

	nb_strategies

	

	population_size

	

	update_population_size

	

	
__init__(self: egttools.numerical.numerical.PairwiseComparison, population_size: int [https://docs.python.org/3/library/functions.html#int], game: egttools.numerical.numerical.games.AbstractGame) → None [https://docs.python.org/3/library/constants.html#None]

	A class containing methods to study analytically the evolutionary dynamics using the Pairwise comparison rule.

This class defines methods to compute fixation probabilities, transition matrices in the Small Mutation
Limit (SML), gradients of selection, and the full transition matrices of the system when considering
mutation > 0.

	Parameters

	
	population_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	game (egttools.games.AbstractGame) – A game object which must implement the abstract class egttools.games.AbstractGame.
This game will contain the expected payoffs for each strategy in the game, or at least
a method to compute it, and a method to calculate the fitness of each strategy for a given
population state.

See also

egttools.numerical.PairwiseComparisonNumerical, egttools.analytical.StochDynamics, egttools.games.AbstractGame

Note

Analytical computations should be avoided for problems with very large state spaces.
This means very big populations with many strategies. The bigger the state space, the
more memory and time these methods will require!

Also, for now it is not possible to update the game without having to instantiate PairwiseComparison
again. Hopefully, this will be fixed in the future.

	
__new__(**kwargs)

	

	
calculate_fixation_probability(self: egttools.numerical.numerical.PairwiseComparison, invading_strategy_index: int [https://docs.python.org/3/library/functions.html#int], resident_strategy_index: int [https://docs.python.org/3/library/functions.html#int], beta: float [https://docs.python.org/3/library/functions.html#float]) → float [https://docs.python.org/3/library/functions.html#float]

	Calculates the fixation probability of an invading strategy in a population o resident strategy.

This method calculates the fixation probability of one mutant of the invading strategy
in a population where all other individuals adopt the resident strategy.

	Parameters

	
	index_invading_strategy (int [https://docs.python.org/3/library/functions.html#int]) – Index of the invading strategy

	index_resident_strategy (int [https://docs.python.org/3/library/functions.html#int]) – Index of the resident strategy

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection

	Returns

	The fixation probability of one mutant of the invading strategy in a population
where all other members adopt the resident strategy.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

See also

egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.fixation_probability, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.analytical.PairwiseComparison.calculate_gradient_of_selection, egttools.numerical.PairwiseComparisonNumerical, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_fixation_probability

	
calculate_gradient_of_selection(self: egttools.numerical.numerical.PairwiseComparison, beta: float [https://docs.python.org/3/library/functions.html#float], state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Calculates the gradient of selection without mutation for the given state.

This method calculates the gradient of selection (without mutation), which is, the
most likely direction of evolution of the system.

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection

	state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Vector containing the counts of each strategy in the population.

	Returns

	Vector of shape (nb_strategies,) containing the gradient of selection, i.e.,
The most likely path of evolution of the stochastic system.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.full_gradient_selection, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.numerical.PairwiseComparisonNumerical, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse

	
calculate_transition_and_fixation_matrix_sml(self: egttools.numerical.numerical.PairwiseComparison, beta: float [https://docs.python.org/3/library/functions.html#float]) → Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]]

	Calculates the transition matrix of the reduced Markov Chain that emerges when assuming SML.

By assuming the limit of small mutations (SML), we can reduce the number of states of the dynamical system
to those which are monomorphic, i.e., the whole population adopts the same strategy.

Thus, the dimensions of the transition matrix in the SML is (nb_strategies, nb_strategies), and
the transitions are given by the normalized fixation probabilities. This means that a transition
where i neq j, T[i, j] = fixation(i, j) / (nb_strategies - 1) and T[i, i] = 1 - sum{T[i, j]}.

This method will also return the matrix of fixation probabilities,
where fixation_probabilities[i, j] gives the probability that one mutant j fixates in a population
of i.

	Parameters

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection

	Returns

	A tuple including the transition matrix and a matrix with the fixation probabilities.
Both matrices have shape (nb_strategies, nb_strategies).

	Return type

	Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

See also

egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.fixation_probability, egttools.analytical.StochDynamics.transition_and_fixation_matrix, egttools.analytical.PairwiseComparison.calculate_fixation_probability, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.analytical.PairwiseComparison.calculate_gradient_of_selection, egttools.numerical.PairwiseComparisonNumerical, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_fixation_probability

	
calculate_transition_matrix(self: egttools.numerical.numerical.PairwiseComparison, beta: float [https://docs.python.org/3/library/functions.html#float], mu: float [https://docs.python.org/3/library/functions.html#float]) → scipy.sparse.csr_matrix[numpy.float64]

	Computes the transition matrix of the Markov Chain which defines the population dynamics.

It is not advisable to use this method for very large state spaces since the memory required
to store the matrix might explode. In these cases you should resort to dimensional reduction
techniques, such as the Small Mutation Limit (SML).

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Mutation rate

	Returns

	Sparse vector containing the transition probabilities from any population state to another.
This matrix will be of shape nb_states x nb_states.

	Return type

	scipy.sparse.csr_matrix

See also

egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.calculate_full_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.numerical.PairwiseComparisonNumerical, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse

	
game(self: egttools.numerical.numerical.PairwiseComparison) → egttools.numerical.numerical.games.AbstractGame

	

	
nb_states(self: egttools.numerical.numerical.PairwiseComparison) → int [https://docs.python.org/3/library/functions.html#int]

	

	
nb_strategies(self: egttools.numerical.numerical.PairwiseComparison) → int [https://docs.python.org/3/library/functions.html#int]

	

	
population_size(self: egttools.numerical.numerical.PairwiseComparison) → int [https://docs.python.org/3/library/functions.html#int]

	

	
update_population_size(self: egttools.numerical.numerical.PairwiseComparison, arg0: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	

egttools.analytical.StochDynamics

	
class StochDynamics(nb_strategies, payoffs, pop_size, group_size=2, mu=0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class containing methods to calculate the stochastic evolutionary dynamics of a population.

Defines a class that contains methods to compute the stationary distribution for
the limit of small mutation (only the monomorphic states) and the full transition matrix.

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies in the population

	payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]) – Payoff matrix indicating the payoff of each strategy (rows) against each other (columns).
When analyzing an N-player game (group_size > 2) the structure of the matrix is a bit more involved,
and we can have 2 options for structuring the payoff matrix:

1) If we consider a simplified version of the system with a reduced Markov Chain which only contains
the states at the edges of the simplex (the Small Mutation Limit - SML), then, we can assume that, at most,
there will be 2 strategies in a group at any given moment. In this case, StochDynamics expects
a square matrix of size nb_strategies x nb_strategies, in which each entry is a function that takes
2 positional arguments k and group_size, and an optional *args argument, and will return the expected payoff
of the row strategy A in a group with k A strategists and group_size - k
B strategists (the column strategy). For all the elements in the diagonal, only 1 strategy should be present
in the group, thus, this function should always return the same value, i.e., the payoff of a row strategy
when all individuals in the group adopt the same strategy. See below for an example.

2) If we want to consider the full Markov Chain composed of all possible states in the simplex, then
the payoff matrix should be of the shape nb_strategies x nb_group_configurations, where the number
of group configurations can be calculated using egttools.calculate_nb_states(group_size, nb_strategies).
Moreover, the mapping between group configurations and integer indexes must be done using
egttools.sample_simplex(index, group_size, nb_strategies). See below for an example

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – population size

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – group size

	mu (float [https://docs.python.org/3/library/functions.html#float]) – mutation probability

See also

egttools.numerical.PairwiseComparisonNumerical, egttools.analytical.replicator_equation, egttools.analytical.PairwiseComparison

Notes

We recommend that instead of`StochDynamics`, you use PairwiseComparison because the latter
is implemented in C++, runs faster and supports more precise types.

Examples

	Example of the payoff matrix for case 1) mu = 0:
	>>> def get_payoff_a_vs_b(k, group_size, *args):
... pre_computed_payoffs = [4, 5, 2, ..., 4] # the size of this list should be group_size + 1
... return pre_computed_payoffs[k]
>>> def get_payoff_b_vs_a(k, group_size, *args):
... pre_computed_payoffs = [0, 2, 1, ..., 0] # the size of this list should be group_size + 1
... return pre_computed_payoffs[k]
>>> def get_payoff_a_vs_a(k, group_size, *args):
... pre_computed_payoffs = [1, 1, 1, ..., 1] # the size of this list should be group_size + 1
... return pre_computed_payoffs[k]
>>> def get_payoff_b_vs_b(k, group_size, *args):
... pre_computed_payoffs = [0, 0, 0, ..., 0] # the size of this list should be group_size + 1
... return pre_computed_payoffs[k]
>>> payoff_matrix = np.array([
... [get_payoff_A_vs_A, get_payoff_A_vs_B],
... [get_payoff_B_vs_A, get_payoff_B_vs_B]
...])

	Example of payoff matrix for case 2) full markov chain (mu > 0):
	>>> import egttools
>>> nb_group_combinations = egttools.calculate_nb_states(group_size, nb_strategies)
>>> payoff_matrix = np.zeros(shape=(nb_strategies, nb_group_combinations))
>>> for group_configuration_index in range(nb_group_combinations):
... for strategy in range(nb_strategies):
... group_configuration = egttools.sample_simplex(group_configuration_index, group_size, nb_strategies)
... payoff_matrix[strategy, group_configuration_index] = get_payoff(strategy, group_configuration)

Methods

	calculate_full_transition_matrix

	Returns the full transition matrix in sparse representation.

	calculate_stationary_distribution

	Calculates the stationary distribution of the monomorphic states is mu = 0 (SML).

	fermi

	The fermi function determines the probability that the first type imitates the second.

	fitness_group

	In a population of x i-strategists and (pop_size-x) j strategists, where players interact in group of 'group_size' participants this function returns the average payoff of strategies i and j.

	fitness_pair

	Calculates the fitness of strategy i versus strategy j, in a population of x i-strategists and (pop_size-x) j strategists, considering a 2-player game.

	fixation_probability

	Function for calculating the fixation_probability probability of the invader in a population of residents.

	full_fitness_difference_group

	Calculate the fitness difference between strategies :param i and :param j assuming that player interacts in groups of size group_size > 2 (n-player games).

	full_fitness_difference_pairwise

	Calculates the fitness of strategy i in a population with state :param population_state, assuming pairwise interactions (2-player game).

	full_gradient_selection

	Calculates the gradient of selection for an invading strategy, given a population state.

	full_gradient_selection_without_mutation

	Calculates the gradient of selection for an invading strategy, given a population state.

	gradient_selection

	Calculates the gradient of selection given an invader and a resident strategy.

	prob_increase_decrease

	This function calculates for a given number of invaders the probability that the number increases or decreases with one.

	prob_increase_decrease_with_mutation

	This function calculates for a given number of invaders the probability that the number increases or decreases with taking into account a mutation rate.

	transition_and_fixation_matrix

	Calculates the transition matrix (only for the monomorphic states) and the fixation_probability probabilities.

	update_group_size

	Updates the groups size of the game (and the methods used to compute the fitness)

	update_payoffs

	Updates the payoff matrix

	update_population_size

	Updates the size of the population and the number of possible population states.

	
__init__(nb_strategies, payoffs, pop_size, group_size=2, mu=0)

	

	
calculate_full_transition_matrix(beta, *args)

	Returns the full transition matrix in sparse representation.

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – Other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	The full transition matrix between the two strategies in sparse format.

	Return type

	scipy.sparse.csr_matrix

	
calculate_stationary_distribution(beta, *args)

	Calculates the stationary distribution of the monomorphic states is mu = 0 (SML).
Otherwise, it calculates the stationary distribution including all possible population states.

This function is recommended only for Hermitian transition matrices.

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection.

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – extra arguments for calculating payoffs.

	Returns

	A vector containing the stationary distribution

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
static fermi(beta, fitness_diff)

	The fermi function determines the probability that the first type imitates the second.

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	fitness_diff (float [https://docs.python.org/3/library/functions.html#float]) – Difference in fitness between the strategies (f_a - f_b).

	Returns

	the probability of imitation

	Return type

	numpy.typing.ArrayLike

	
fitness_group(x, i, j, *args)

	In a population of x i-strategists and (pop_size-x) j strategists, where players
interact in group of ‘group_size’ participants this function
returns the average payoff of strategies i and j. This function expects
that

\[x \in [1,pop_size-1]\]

	Parameters

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – number of individuals adopting strategy i in the population

	i (int [https://docs.python.org/3/library/functions.html#int]) – index of strategy i

	j (int [https://docs.python.org/3/library/functions.html#int]) – index of strategy j

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – Other Parameters. This can be used to pass extra parameters to functions
stored in the payoff matrix

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	
	float

	Returns the difference in fitness between strategy i and j

	
fitness_pair(x, i, j, *args)

	Calculates the fitness of strategy i versus strategy j, in
a population of x i-strategists and (pop_size-x) j strategists, considering
a 2-player game.

	Parameters

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – number of i-strategists in the population

	i (int [https://docs.python.org/3/library/functions.html#int]) – index of strategy i

	j (int [https://docs.python.org/3/library/functions.html#int]) – index of strategy j

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) –

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	
	float

	the fitness difference among the strategies

	
fixation_probability(invader, resident, beta, *args)

	Function for calculating the fixation_probability probability of the invader
in a population of residents.

TODO: Requires more testing!

	Parameters

	
	invader (int [https://docs.python.org/3/library/functions.html#int]) – index of the invading strategy

	resident (int [https://docs.python.org/3/library/functions.html#int]) – index of the resident strategy

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – Other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	The fixation_probability probability.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

See also

egttools.numerical.PairwiseComparisonNumerical

	
full_fitness_difference_group(i, j, population_state)

	Calculate the fitness difference between strategies :param i and :param j
assuming that player interacts in groups of size group_size > 2 (n-player games).

	Parameters

	
	i (int [https://docs.python.org/3/library/functions.html#int]) – index of the strategy that will reproduce

	j (int [https://docs.python.org/3/library/functions.html#int]) – index of the strategy that will die

	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m,1]]) – vector containing the counts of each strategy in the population

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	
	float

	The fitness difference between strategies i and j

	
full_fitness_difference_pairwise(i, j, population_state)

	Calculates the fitness of strategy i in a population with state :param population_state,
assuming pairwise interactions (2-player game).

	Parameters

	
	i (int [https://docs.python.org/3/library/functions.html#int]) – index of the strategy that will reproduce

	j (int [https://docs.python.org/3/library/functions.html#int]) – index of the strategy that will die

	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m,1]]) – vector containing the counts of each strategy in the population

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	
	float

	The fitness difference between the two strategies for the given population state

	
full_gradient_selection(population_state, beta)

	Calculates the gradient of selection for an invading strategy, given a population state.

	Parameters

	
	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][np.int64[m,1]]) – structure of unsigned integers containing the
counts of each strategy in the population

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	Returns

	Matrix indicating the likelihood of change in the population given a starting point.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]

	
full_gradient_selection_without_mutation(population_state, beta)

	Calculates the gradient of selection for an invading strategy, given a population state. It does
not take into account mutation.

	Parameters

	
	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][np.int64[m,1]]) – structure of unsigned integers containing the
counts of each strategy in the population

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	Returns

	Matrix indicating the likelihood of change in the population given a starting point.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]

	
gradient_selection(k, invader, resident, beta, *args)

	Calculates the gradient of selection given an invader and a resident strategy.

	Parameters

	
	k (int [https://docs.python.org/3/library/functions.html#int]) – number of invaders in the population

	invader (int [https://docs.python.org/3/library/functions.html#int]) – index of the invading strategy

	resident (int [https://docs.python.org/3/library/functions.html#int]) – index of the resident strategy

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	args (Optional[List]) – other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	The gradient of selection.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
prob_increase_decrease(k, invader, resident, beta, *args)

	This function calculates for a given number of invaders the probability
that the number increases or decreases with one.

	Parameters

	
	k (int [https://docs.python.org/3/library/functions.html#int]) – number of invaders in the population

	invader (int [https://docs.python.org/3/library/functions.html#int]) – index of the invading strategy

	resident (int [https://docs.python.org/3/library/functions.html#int]) – index of the resident strategy

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	tuple(probability of increasing the number of invaders, probability of decreasing)

	Return type

	Tuple[numpy.typing.ArrayLike, numpy.typing.ArrayLike]

	
prob_increase_decrease_with_mutation(k, invader, resident, beta, *args)

	This function calculates for a given number of invaders the probability
that the number increases or decreases with taking into account a mutation rate.

	Parameters

	
	k (int [https://docs.python.org/3/library/functions.html#int]) – number of invaders in the population

	invader (int [https://docs.python.org/3/library/functions.html#int]) – index of the invading strategy

	resident (int [https://docs.python.org/3/library/functions.html#int]) – index of the resident strategy

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	tuple(probability of increasing the number of invaders, probability of decreasing)

	Return type

	Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	
transition_and_fixation_matrix(beta, *args)

	Calculates the transition matrix (only for the monomorphic states)
and the fixation_probability probabilities.

This method calculates the transitions between monomorphic states. Thus, it assumes
that we are in the small mutation limit (SML) of the moran process. Only
use this method if this assumption is reasonable.

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – Other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	This method returns a tuple with the transition matrix as first element, and
the matrix of fixation probabilities.

	Return type

	Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]]

	
update_group_size(group_size)

	Updates the groups size of the game (and the methods used to compute the fitness)

	Parameters

	group_size (new group size) –

	
update_payoffs(payoffs, nb_strategies=None)

	Updates the payoff matrix

	Parameters

	
	payoffs (payoff matrix) –

	nb_strategies (total number of strategies (optional). If not indicated, then the new payoff) – matrix must have the same dimensions as the previous one

	
update_population_size(pop_size)

	Updates the size of the population and the number of possible population states.

	Parameters

	pop_size (New population size) –

egttools.analytical.sed_analytical

This python module contains the necessary functions
to calculate analytically the evolutionary dynamics in Infinite and Finite
populations on 2-player games.

Functions

	calculate_nb_states

	Calculates the number of states (combinations) of the members of a group in a subgroup.

	calculate_state

	This function converts a vector containing counts into an index.

	eig

	Solve an ordinary or generalized eigenvalue problem of a square matrix.

	replicator_equation

	Produces the discrete time derivative of the replicator dynamics

	replicator_equation_n_player

	Replicator dynamics in N-player games

	sample_simplex

	Transforms a state index into a vector.

	warn

	Issue a warning, or maybe ignore it or raise an exception.

Classes

	StochDynamics

	A class containing methods to calculate the stochastic evolutionary dynamics of a population.

	csr_matrix

	Compressed Sparse Row matrix

	lil_matrix

	Row-based list of lists sparse matrix

	permutations

	Return successive r-length permutations of elements in the iterable.

egttools.analytical.sed_analytical.calculate_nb_states

	
calculate_nb_states(group_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → object [https://docs.python.org/3/library/functions.html#object]

	Calculates the number of states (combinations) of the members of a group in a subgroup.

It can be used to calculate the maximum number of states in a discrete simplex.

The implementation of this method follows the stars and bars algorithm (see Wikipedia).

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group (maximum number of players/elements that can adopt each possible strategy).

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies that can be assigned to players.

	Returns

	Number of states (possible combinations of strategies and players).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.numerical.calculate_state, egttools.numerical.sample_simplex

egttools.analytical.sed_analytical.calculate_state

	
calculate_state()

	This function converts a vector containing counts into an index.

This method was copied from @Svalorzen.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum bin size (it can also be the population size).

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – The vector to convert from simplex coordinates to index.

	Returns

	The unique index in [0, egttools.calculate_nb_states(group_size, len(group_composition))
representing the n-dimensional simplex.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.sample_simplex, egttools.calculate_nb_states

This function converts a vector containing counts into an index.

This method was copied from @Svalorzen.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum bin size (it can also be the population size).

	group_composition (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]) – The vector to convert from simplex coordinates to index.

	Returns

	The unique index in [0, egttools.calculate_nb_states(group_size, len(group_composition))
representing the n-dimensional simplex.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.sample_simplex, egttools.calculate_nb_states

egttools.analytical.sed_analytical.eig

	
eig(a, b=None, left=False, right=True, overwrite_a=False, overwrite_b=False, check_finite=True, homogeneous_eigvals=False)

	Solve an ordinary or generalized eigenvalue problem of a square matrix.

Find eigenvalues w and right or left eigenvectors of a general matrix:

a vr[:,i] = w[i] b vr[:,i]
a.H vl[:,i] = w[i].conj() b.H vl[:,i]

where .H is the Hermitian conjugation.

	Parameters

	
	a ((M, M) array_like) – A complex or real matrix whose eigenvalues and eigenvectors
will be computed.

	b ((M, M) array_like, optional) – Right-hand side matrix in a generalized eigenvalue problem.
Default is None, identity matrix is assumed.

	left (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to calculate and return left eigenvectors. Default is False.

	right (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to calculate and return right eigenvectors. Default is True.

	overwrite_a (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite a; may improve performance. Default is False.

	overwrite_b (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite b; may improve performance. Default is False.

	check_finite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.

	homogeneous_eigvals (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, return the eigenvalues in homogeneous coordinates.
In this case w is a (2, M) array so that:

w[1,i] a vr[:,i] = w[0,i] b vr[:,i]

Default is False.

	Returns

	
	w ((M,) or (2, M) double or complex ndarray) – The eigenvalues, each repeated according to its
multiplicity. The shape is (M,) unless
homogeneous_eigvals=True.

	vl ((M, M) double or complex ndarray) – The normalized left eigenvector corresponding to the eigenvalue
w[i] is the column vl[:,i]. Only returned if left=True.

	vr ((M, M) double or complex ndarray) – The normalized right eigenvector corresponding to the eigenvalue
w[i] is the column vr[:,i]. Only returned if right=True.

	Raises

	LinAlgError – If eigenvalue computation does not converge.

See also

	eigvals
	eigenvalues of general arrays

	eigh
	Eigenvalues and right eigenvectors for symmetric/Hermitian arrays.

	eig_banded
	eigenvalues and right eigenvectors for symmetric/Hermitian band matrices

	eigh_tridiagonal
	eigenvalues and right eiegenvectors for symmetric/Hermitian tridiagonal matrices

Examples

>>> from scipy import linalg
>>> a = np.array([[0., -1.], [1., 0.]])
>>> linalg.eigvals(a)
array([0.+1.j, 0.-1.j])

>>> b = np.array([[0., 1.], [1., 1.]])
>>> linalg.eigvals(a, b)
array([1.+0.j, -1.+0.j])

>>> a = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]])
>>> linalg.eigvals(a, homogeneous_eigvals=True)
array([[3.+0.j, 8.+0.j, 7.+0.j],
 [1.+0.j, 1.+0.j, 1.+0.j]])

>>> a = np.array([[0., -1.], [1., 0.]])
>>> linalg.eigvals(a) == linalg.eig(a)[0]
array([True, True])
>>> linalg.eig(a, left=True, right=False)[1] # normalized left eigenvector
array([[-0.70710678+0.j , -0.70710678-0.j],
 [-0. +0.70710678j, -0. -0.70710678j]])
>>> linalg.eig(a, left=False, right=True)[1] # normalized right eigenvector
array([[0.70710678+0.j , 0.70710678-0.j],
 [0. -0.70710678j, 0. +0.70710678j]])

egttools.analytical.sed_analytical.replicator_equation

	
replicator_equation(x, payoffs)

	Produces the discrete time derivative of the replicator dynamics

This only works for 2-player games.

	Parameters

	
	x (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,1]]) – array containing the frequency of each strategy in the population.

	payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]) – payoff matrix

	Returns

	time derivative of x

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.analytical.StochDynamics, egttools.numerical.PairwiseComparisonNumerical

egttools.analytical.sed_analytical.replicator_equation_n_player

	
replicator_equation_n_player(x, payoffs, group_size)

	Replicator dynamics in N-player games

The replicator equation is of the form

\[g(x) \equiv \dot{x_{i}} = x_{i}(f_{i}(x) - \sum_{j=1}^{N}{x_{j}f_{j}(x))\]

Which can also be represented using a pairwise comparison rule as:

\[\dot{x_{i}} = x_{i}\sum_{j}(f_{ij}(x) - f_{ji}(x))x_{j}\]

For N-player games, to calculate the fitness of a strategy given a population state, we
need to calculate the probability of each possible group configuration. This can be obtained
by summing for each possible group configuration the payoff of strategy i times the probability
of the group configurations occurring.

	Parameters

	
	x (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A vector of shape (1, nb_strategies), which contains the current frequency of each strategy in the population.

	payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Payoff matrix. Each row represents a strategy and each column a possible group configuration.
Each entry in the matrix should give the expected payoff for each row strategy for a given column group
configuration.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group.

	Returns

	A vector of shape (1, nb_strategies), which contains the change in frequency of each strategy in the population
(so the gradient).

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

egttools.analytical.sed_analytical.sample_simplex

	
sample_simplex(index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]

	Transforms a state index into a vector.

	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – State index.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies.

	Returns

	Vector with the sampled state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.calculate_nb_states

egttools.analytical.sed_analytical.warn

	
warn(message, category=None, stacklevel=1, source=None)

	Issue a warning, or maybe ignore it or raise an exception.

egttools.analytical.sed_analytical.StochDynamics

	
class StochDynamics(nb_strategies, payoffs, pop_size, group_size=2, mu=0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class containing methods to calculate the stochastic evolutionary dynamics of a population.

Defines a class that contains methods to compute the stationary distribution for
the limit of small mutation (only the monomorphic states) and the full transition matrix.

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies in the population

	payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]) – Payoff matrix indicating the payoff of each strategy (rows) against each other (columns).
When analyzing an N-player game (group_size > 2) the structure of the matrix is a bit more involved,
and we can have 2 options for structuring the payoff matrix:

1) If we consider a simplified version of the system with a reduced Markov Chain which only contains
the states at the edges of the simplex (the Small Mutation Limit - SML), then, we can assume that, at most,
there will be 2 strategies in a group at any given moment. In this case, StochDynamics expects
a square matrix of size nb_strategies x nb_strategies, in which each entry is a function that takes
2 positional arguments k and group_size, and an optional *args argument, and will return the expected payoff
of the row strategy A in a group with k A strategists and group_size - k
B strategists (the column strategy). For all the elements in the diagonal, only 1 strategy should be present
in the group, thus, this function should always return the same value, i.e., the payoff of a row strategy
when all individuals in the group adopt the same strategy. See below for an example.

2) If we want to consider the full Markov Chain composed of all possible states in the simplex, then
the payoff matrix should be of the shape nb_strategies x nb_group_configurations, where the number
of group configurations can be calculated using egttools.calculate_nb_states(group_size, nb_strategies).
Moreover, the mapping between group configurations and integer indexes must be done using
egttools.sample_simplex(index, group_size, nb_strategies). See below for an example

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – population size

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – group size

	mu (float [https://docs.python.org/3/library/functions.html#float]) – mutation probability

See also

egttools.numerical.PairwiseComparisonNumerical, egttools.analytical.replicator_equation, egttools.analytical.PairwiseComparison

Notes

We recommend that instead of`StochDynamics`, you use PairwiseComparison because the latter
is implemented in C++, runs faster and supports more precise types.

Examples

	Example of the payoff matrix for case 1) mu = 0:
	>>> def get_payoff_a_vs_b(k, group_size, *args):
... pre_computed_payoffs = [4, 5, 2, ..., 4] # the size of this list should be group_size + 1
... return pre_computed_payoffs[k]
>>> def get_payoff_b_vs_a(k, group_size, *args):
... pre_computed_payoffs = [0, 2, 1, ..., 0] # the size of this list should be group_size + 1
... return pre_computed_payoffs[k]
>>> def get_payoff_a_vs_a(k, group_size, *args):
... pre_computed_payoffs = [1, 1, 1, ..., 1] # the size of this list should be group_size + 1
... return pre_computed_payoffs[k]
>>> def get_payoff_b_vs_b(k, group_size, *args):
... pre_computed_payoffs = [0, 0, 0, ..., 0] # the size of this list should be group_size + 1
... return pre_computed_payoffs[k]
>>> payoff_matrix = np.array([
... [get_payoff_A_vs_A, get_payoff_A_vs_B],
... [get_payoff_B_vs_A, get_payoff_B_vs_B]
...])

	Example of payoff matrix for case 2) full markov chain (mu > 0):
	>>> import egttools
>>> nb_group_combinations = egttools.calculate_nb_states(group_size, nb_strategies)
>>> payoff_matrix = np.zeros(shape=(nb_strategies, nb_group_combinations))
>>> for group_configuration_index in range(nb_group_combinations):
... for strategy in range(nb_strategies):
... group_configuration = egttools.sample_simplex(group_configuration_index, group_size, nb_strategies)
... payoff_matrix[strategy, group_configuration_index] = get_payoff(strategy, group_configuration)

Methods

	calculate_full_transition_matrix

	Returns the full transition matrix in sparse representation.

	calculate_stationary_distribution

	Calculates the stationary distribution of the monomorphic states is mu = 0 (SML).

	fermi

	The fermi function determines the probability that the first type imitates the second.

	fitness_group

	In a population of x i-strategists and (pop_size-x) j strategists, where players interact in group of 'group_size' participants this function returns the average payoff of strategies i and j.

	fitness_pair

	Calculates the fitness of strategy i versus strategy j, in a population of x i-strategists and (pop_size-x) j strategists, considering a 2-player game.

	fixation_probability

	Function for calculating the fixation_probability probability of the invader in a population of residents.

	full_fitness_difference_group

	Calculate the fitness difference between strategies :param i and :param j assuming that player interacts in groups of size group_size > 2 (n-player games).

	full_fitness_difference_pairwise

	Calculates the fitness of strategy i in a population with state :param population_state, assuming pairwise interactions (2-player game).

	full_gradient_selection

	Calculates the gradient of selection for an invading strategy, given a population state.

	full_gradient_selection_without_mutation

	Calculates the gradient of selection for an invading strategy, given a population state.

	gradient_selection

	Calculates the gradient of selection given an invader and a resident strategy.

	prob_increase_decrease

	This function calculates for a given number of invaders the probability that the number increases or decreases with one.

	prob_increase_decrease_with_mutation

	This function calculates for a given number of invaders the probability that the number increases or decreases with taking into account a mutation rate.

	transition_and_fixation_matrix

	Calculates the transition matrix (only for the monomorphic states) and the fixation_probability probabilities.

	update_group_size

	Updates the groups size of the game (and the methods used to compute the fitness)

	update_payoffs

	Updates the payoff matrix

	update_population_size

	Updates the size of the population and the number of possible population states.

	
__init__(nb_strategies, payoffs, pop_size, group_size=2, mu=0)

	

	
calculate_full_transition_matrix(beta, *args)

	Returns the full transition matrix in sparse representation.

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – Other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	The full transition matrix between the two strategies in sparse format.

	Return type

	scipy.sparse.csr_matrix

	
calculate_stationary_distribution(beta, *args)

	Calculates the stationary distribution of the monomorphic states is mu = 0 (SML).
Otherwise, it calculates the stationary distribution including all possible population states.

This function is recommended only for Hermitian transition matrices.

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection.

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – extra arguments for calculating payoffs.

	Returns

	A vector containing the stationary distribution

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
static fermi(beta, fitness_diff)

	The fermi function determines the probability that the first type imitates the second.

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	fitness_diff (float [https://docs.python.org/3/library/functions.html#float]) – Difference in fitness between the strategies (f_a - f_b).

	Returns

	the probability of imitation

	Return type

	numpy.typing.ArrayLike

	
fitness_group(x, i, j, *args)

	In a population of x i-strategists and (pop_size-x) j strategists, where players
interact in group of ‘group_size’ participants this function
returns the average payoff of strategies i and j. This function expects
that

\[x \in [1,pop_size-1]\]

	Parameters

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – number of individuals adopting strategy i in the population

	i (int [https://docs.python.org/3/library/functions.html#int]) – index of strategy i

	j (int [https://docs.python.org/3/library/functions.html#int]) – index of strategy j

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – Other Parameters. This can be used to pass extra parameters to functions
stored in the payoff matrix

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	
	float

	Returns the difference in fitness between strategy i and j

	
fitness_pair(x, i, j, *args)

	Calculates the fitness of strategy i versus strategy j, in
a population of x i-strategists and (pop_size-x) j strategists, considering
a 2-player game.

	Parameters

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – number of i-strategists in the population

	i (int [https://docs.python.org/3/library/functions.html#int]) – index of strategy i

	j (int [https://docs.python.org/3/library/functions.html#int]) – index of strategy j

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) –

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	
	float

	the fitness difference among the strategies

	
fixation_probability(invader, resident, beta, *args)

	Function for calculating the fixation_probability probability of the invader
in a population of residents.

TODO: Requires more testing!

	Parameters

	
	invader (int [https://docs.python.org/3/library/functions.html#int]) – index of the invading strategy

	resident (int [https://docs.python.org/3/library/functions.html#int]) – index of the resident strategy

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – Other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	The fixation_probability probability.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

See also

egttools.numerical.PairwiseComparisonNumerical

	
full_fitness_difference_group(i, j, population_state)

	Calculate the fitness difference between strategies :param i and :param j
assuming that player interacts in groups of size group_size > 2 (n-player games).

	Parameters

	
	i (int [https://docs.python.org/3/library/functions.html#int]) – index of the strategy that will reproduce

	j (int [https://docs.python.org/3/library/functions.html#int]) – index of the strategy that will die

	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m,1]]) – vector containing the counts of each strategy in the population

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	
	float

	The fitness difference between strategies i and j

	
full_fitness_difference_pairwise(i, j, population_state)

	Calculates the fitness of strategy i in a population with state :param population_state,
assuming pairwise interactions (2-player game).

	Parameters

	
	i (int [https://docs.python.org/3/library/functions.html#int]) – index of the strategy that will reproduce

	j (int [https://docs.python.org/3/library/functions.html#int]) – index of the strategy that will die

	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m,1]]) – vector containing the counts of each strategy in the population

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	
	float

	The fitness difference between the two strategies for the given population state

	
full_gradient_selection(population_state, beta)

	Calculates the gradient of selection for an invading strategy, given a population state.

	Parameters

	
	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][np.int64[m,1]]) – structure of unsigned integers containing the
counts of each strategy in the population

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	Returns

	Matrix indicating the likelihood of change in the population given a starting point.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]

	
full_gradient_selection_without_mutation(population_state, beta)

	Calculates the gradient of selection for an invading strategy, given a population state. It does
not take into account mutation.

	Parameters

	
	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][np.int64[m,1]]) – structure of unsigned integers containing the
counts of each strategy in the population

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	Returns

	Matrix indicating the likelihood of change in the population given a starting point.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]

	
gradient_selection(k, invader, resident, beta, *args)

	Calculates the gradient of selection given an invader and a resident strategy.

	Parameters

	
	k (int [https://docs.python.org/3/library/functions.html#int]) – number of invaders in the population

	invader (int [https://docs.python.org/3/library/functions.html#int]) – index of the invading strategy

	resident (int [https://docs.python.org/3/library/functions.html#int]) – index of the resident strategy

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	args (Optional[List]) – other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	The gradient of selection.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
prob_increase_decrease(k, invader, resident, beta, *args)

	This function calculates for a given number of invaders the probability
that the number increases or decreases with one.

	Parameters

	
	k (int [https://docs.python.org/3/library/functions.html#int]) – number of invaders in the population

	invader (int [https://docs.python.org/3/library/functions.html#int]) – index of the invading strategy

	resident (int [https://docs.python.org/3/library/functions.html#int]) – index of the resident strategy

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	tuple(probability of increasing the number of invaders, probability of decreasing)

	Return type

	Tuple[numpy.typing.ArrayLike, numpy.typing.ArrayLike]

	
prob_increase_decrease_with_mutation(k, invader, resident, beta, *args)

	This function calculates for a given number of invaders the probability
that the number increases or decreases with taking into account a mutation rate.

	Parameters

	
	k (int [https://docs.python.org/3/library/functions.html#int]) – number of invaders in the population

	invader (int [https://docs.python.org/3/library/functions.html#int]) – index of the invading strategy

	resident (int [https://docs.python.org/3/library/functions.html#int]) – index of the resident strategy

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	tuple(probability of increasing the number of invaders, probability of decreasing)

	Return type

	Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	
transition_and_fixation_matrix(beta, *args)

	Calculates the transition matrix (only for the monomorphic states)
and the fixation_probability probabilities.

This method calculates the transitions between monomorphic states. Thus, it assumes
that we are in the small mutation limit (SML) of the moran process. Only
use this method if this assumption is reasonable.

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – Other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	This method returns a tuple with the transition matrix as first element, and
the matrix of fixation probabilities.

	Return type

	Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]]

	
update_group_size(group_size)

	Updates the groups size of the game (and the methods used to compute the fitness)

	Parameters

	group_size (new group size) –

	
update_payoffs(payoffs, nb_strategies=None)

	Updates the payoff matrix

	Parameters

	
	payoffs (payoff matrix) –

	nb_strategies (total number of strategies (optional). If not indicated, then the new payoff) – matrix must have the same dimensions as the previous one

	
update_population_size(pop_size)

	Updates the size of the population and the number of possible population states.

	Parameters

	pop_size (New population size) –

egttools.analytical.sed_analytical.csr_matrix

	
class csr_matrix(arg1, shape=None, dtype=None, copy=False)

	Bases: _cs_matrix

Compressed Sparse Row matrix

	This can be instantiated in several ways:
	
	csr_matrix(D)
	with a dense matrix or rank-2 ndarray D

	csr_matrix(S)
	with another sparse matrix S (equivalent to S.tocsr())

	csr_matrix((M, N), [dtype])
	to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype=’d’.

	csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
	where data, row_ind and col_ind satisfy the
relationship a[row_ind[k], col_ind[k]] = data[k].

	csr_matrix((data, indices, indptr), [shape=(M, N)])
	is the standard CSR representation where the column indices for
row i are stored in indices[indptr[i]:indptr[i+1]] and their
corresponding values are stored in data[indptr[i]:indptr[i+1]].
If the shape parameter is not supplied, the matrix dimensions
are inferred from the index arrays.

	
dtype

	Data type of the matrix

	Type

	dtype

	
shape

	Shape of the matrix

	Type

	2-tuple

	
ndim

	Number of dimensions (this is always 2)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
nnz

	Number of stored values, including explicit zeros

	
data

	CSR format data array of the matrix

	
indices

	CSR format index array of the matrix

	
indptr

	CSR format index pointer array of the matrix

	
has_sorted_indices

	Whether indices are sorted

Notes

Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.

	Advantages of the CSR format
	
	efficient arithmetic operations CSR + CSR, CSR * CSR, etc.

	efficient row slicing

	fast matrix vector products

	Disadvantages of the CSR format
	
	slow column slicing operations (consider CSC)

	changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> csr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
 [0, 0, 3],
 [4, 5, 6]])

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
 [0, 0, 3],
 [4, 5, 6]])

Duplicate entries are summed together:

>>> row = np.array([0, 1, 2, 0])
>>> col = np.array([0, 1, 1, 0])
>>> data = np.array([1, 2, 4, 8])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[9, 0, 0],
 [0, 2, 0],
 [0, 4, 0]])

As an example of how to construct a CSR matrix incrementally,
the following snippet builds a term-document matrix from texts:

>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
... for term in d:
... index = vocabulary.setdefault(term, len(vocabulary))
... indices.append(index)
... data.append(1)
... indptr.append(len(indices))
...
>>> csr_matrix((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
 [0, 1, 1, 1]])

Methods

	arcsin

	Element-wise arcsin.

	arcsinh

	Element-wise arcsinh.

	arctan

	Element-wise arctan.

	arctanh

	Element-wise arctanh.

	argmax

	Return indices of maximum elements along an axis.

	argmin

	Return indices of minimum elements along an axis.

	asformat

	Return this matrix in the passed format.

	asfptype

	Upcast matrix to a floating point format (if necessary)

	astype

	Cast the matrix elements to a specified type.

	ceil

	Element-wise ceil.

	check_format

	check whether the matrix format is valid

	conj

	Element-wise complex conjugation.

	conjugate

	Element-wise complex conjugation.

	copy

	Returns a copy of this matrix.

	count_nonzero

	Number of non-zero entries, equivalent to

	deg2rad

	Element-wise deg2rad.

	diagonal

	Returns the kth diagonal of the matrix.

	dot

	Ordinary dot product

	eliminate_zeros

	Remove zero entries from the matrix

	expm1

	Element-wise expm1.

	floor

	Element-wise floor.

	getH

	Return the Hermitian transpose of this matrix.

	get_shape

	Get shape of a matrix.

	getcol

	Returns a copy of column i of the matrix, as a (m x 1) CSR matrix (column vector).

	getformat

	Format of a matrix representation as a string.

	getmaxprint

	Maximum number of elements to display when printed.

	getnnz

	Number of stored values, including explicit zeros.

	getrow

	Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).

	log1p

	Element-wise log1p.

	max

	Return the maximum of the matrix or maximum along an axis.

	maximum

	Element-wise maximum between this and another matrix.

	mean

	Compute the arithmetic mean along the specified axis.

	min

	Return the minimum of the matrix or maximum along an axis.

	minimum

	Element-wise minimum between this and another matrix.

	multiply

	Point-wise multiplication by another matrix, vector, or scalar.

	nonzero

	nonzero indices

	power

	This function performs element-wise power.

	prune

	Remove empty space after all non-zero elements.

	rad2deg

	Element-wise rad2deg.

	reshape

	Gives a new shape to a sparse matrix without changing its data.

	resize

	Resize the matrix in-place to dimensions given by shape

	rint

	Element-wise rint.

	set_shape

	See reshape.

	setdiag

	Set diagonal or off-diagonal elements of the array.

	sign

	Element-wise sign.

	sin

	Element-wise sin.

	sinh

	Element-wise sinh.

	sort_indices

	Sort the indices of this matrix in place

	sorted_indices

	Return a copy of this matrix with sorted indices

	sqrt

	Element-wise sqrt.

	sum

	Sum the matrix elements over a given axis.

	sum_duplicates

	Eliminate duplicate matrix entries by adding them together

	tan

	Element-wise tan.

	tanh

	Element-wise tanh.

	toarray

	Return a dense ndarray representation of this matrix.

	tobsr

	Convert this matrix to Block Sparse Row format.

	tocoo

	Convert this matrix to COOrdinate format.

	tocsc

	Convert this matrix to Compressed Sparse Column format.

	tocsr

	Convert this matrix to Compressed Sparse Row format.

	todense

	Return a dense matrix representation of this matrix.

	todia

	Convert this matrix to sparse DIAgonal format.

	todok

	Convert this matrix to Dictionary Of Keys format.

	tolil

	Convert this matrix to List of Lists format.

	trace

	Returns the sum along diagonals of the sparse matrix.

	transpose

	Reverses the dimensions of the sparse matrix.

	trunc

	Element-wise trunc.

Attributes

	dtype

	

	format

	

	has_canonical_format

	Determine whether the matrix has sorted indices and no duplicates

	has_sorted_indices

	Determine whether the matrix has sorted indices

	ndim

	

	nnz

	Number of stored values, including explicit zeros.

	shape

	Get shape of a matrix.

	
__abs__()

	

	
__add__(other)

	

	
__bool__()

	

	
__div__(other)

	

	
__eq__(other)

	Return self==value.

	
__ge__(other)

	Return self>=value.

	
__getattr__(attr)

	

	
__getitem__(key)

	

	
__gt__(other)

	Return self>value.

	
__iadd__(other)

	

	
__idiv__(other)

	

	
__imul__(other)

	

	
__init__(arg1, shape=None, dtype=None, copy=False)

	

	
__isub__(other)

	

	
__iter__()

	

	
__itruediv__(other)

	

	
__le__(other)

	Return self<=value.

	
__len__()

	

	
__lt__(other)

	Return self<value.

	
__matmul__(other)

	

	
__mul__(other)

	

	
__ne__(other)

	Return self!=value.

	
__neg__()

	

	
__nonzero__()

	

	
__pow__(other)

	

	
__radd__(other)

	

	
__rdiv__(other)

	

	
__repr__()

	Return repr(self).

	
__rmatmul__(other)

	

	
__rmul__(other)

	

	
__round__(ndigits=0)

	

	
__rsub__(other)

	

	
__rtruediv__(other)

	

	
__setitem__(key, x)

	

	
__str__()

	Return str(self).

	
__sub__(other)

	

	
__truediv__(other)

	

	
arcsin()

	Element-wise arcsin.

See numpy.arcsin [https://numpy.org/doc/stable/reference/generated/numpy.arcsin.html#numpy.arcsin] for more information.

	
arcsinh()

	Element-wise arcsinh.

See numpy.arcsinh [https://numpy.org/doc/stable/reference/generated/numpy.arcsinh.html#numpy.arcsinh] for more information.

	
arctan()

	Element-wise arctan.

See numpy.arctan [https://numpy.org/doc/stable/reference/generated/numpy.arctan.html#numpy.arctan] for more information.

	
arctanh()

	Element-wise arctanh.

See numpy.arctanh [https://numpy.org/doc/stable/reference/generated/numpy.arctanh.html#numpy.arctanh] for more information.

	
argmax(axis=None, out=None)

	Return indices of maximum elements along an axis.

Implicit zero elements are also taken into account. If there are
several maximum values, the index of the first occurrence is returned.

	Parameters

	
	axis ({-2, -1, 0, 1, None}, optional) – Axis along which the argmax is computed. If None (default), index
of the maximum element in the flatten data is returned.

	out (None, optional) – This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.

	Returns

	ind – Indices of maximum elements. If matrix, its size along axis is 1.

	Return type

	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or int [https://docs.python.org/3/library/functions.html#int]

	
argmin(axis=None, out=None)

	Return indices of minimum elements along an axis.

Implicit zero elements are also taken into account. If there are
several minimum values, the index of the first occurrence is returned.

	Parameters

	
	axis ({-2, -1, 0, 1, None}, optional) – Axis along which the argmin is computed. If None (default), index
of the minimum element in the flatten data is returned.

	out (None, optional) – This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.

	Returns

	ind – Indices of minimum elements. If matrix, its size along axis is 1.

	Return type

	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or int [https://docs.python.org/3/library/functions.html#int]

	
asformat(format, copy=False)

	Return this matrix in the passed format.

	Parameters

	
	format ({str, None}) – The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …)
or None for no conversion.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the result is guaranteed to not share data with self.

	Returns

	A

	Return type

	This matrix in the passed format.

	
asfptype()

	Upcast matrix to a floating point format (if necessary)

	
astype(dtype, casting='unsafe', copy=True)

	Cast the matrix elements to a specified type.

	Parameters

	
	dtype (string or numpy dtype) – Typecode or data-type to which to cast the data.

	casting ({'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional) – Controls what kind of data casting may occur.
Defaults to ‘unsafe’ for backwards compatibility.
‘no’ means the data types should not be cast at all.
‘equiv’ means only byte-order changes are allowed.
‘safe’ means only casts which can preserve values are allowed.
‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.
‘unsafe’ means any data conversions may be done.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If copy is False [https://docs.python.org/3/library/constants.html#False], the result might share some memory with this
matrix. If copy is True [https://docs.python.org/3/library/constants.html#True], it is guaranteed that the result and
this matrix do not share any memory.

	
ceil()

	Element-wise ceil.

See numpy.ceil [https://numpy.org/doc/stable/reference/generated/numpy.ceil.html#numpy.ceil] for more information.

	
check_format(full_check=True)

	check whether the matrix format is valid

	Parameters

	full_check (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True [https://docs.python.org/3/library/constants.html#True], rigorous check, O(N) operations. Otherwise
basic check, O(1) operations (default True).

	
conj(copy=True)

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the result is guaranteed to not share data with self.

	Returns

	A

	Return type

	The element-wise complex conjugate.

	
conjugate(copy=True)

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the result is guaranteed to not share data with self.

	Returns

	A

	Return type

	The element-wise complex conjugate.

	
copy()

	Returns a copy of this matrix.

No data/indices will be shared between the returned value and current
matrix.

	
count_nonzero()

	Number of non-zero entries, equivalent to

np.count_nonzero(a.toarray())

Unlike getnnz() and the nnz property, which return the number of stored
entries (the length of the data attribute), this method counts the
actual number of non-zero entries in data.

	
deg2rad()

	Element-wise deg2rad.

See numpy.deg2rad [https://numpy.org/doc/stable/reference/generated/numpy.deg2rad.html#numpy.deg2rad] for more information.

	
diagonal(k=0)

	Returns the kth diagonal of the matrix.

	Parameters

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which diagonal to get, corresponding to elements a[i, i+k].
Default: 0 (the main diagonal).

New in version 1.0.

See also

	numpy.diagonal [https://numpy.org/doc/stable/reference/generated/numpy.diagonal.html#numpy.diagonal]
	Equivalent numpy function.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])

	
dot(other)

	Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([1, -3, -1], dtype=int64)

	
eliminate_zeros()

	Remove zero entries from the matrix

This is an in place operation.

	
expm1()

	Element-wise expm1.

See numpy.expm1 [https://numpy.org/doc/stable/reference/generated/numpy.expm1.html#numpy.expm1] for more information.

	
floor()

	Element-wise floor.

See numpy.floor [https://numpy.org/doc/stable/reference/generated/numpy.floor.html#numpy.floor] for more information.

	
getH()

	Return the Hermitian transpose of this matrix.

See also

	numpy.matrix.getH [https://numpy.org/doc/stable/reference/generated/numpy.matrix.getH.html#numpy.matrix.getH]
	NumPy’s implementation of getH for matrices

	
get_shape()

	Get shape of a matrix.

	
getcol(i)

	Returns a copy of column i of the matrix, as a (m x 1)
CSR matrix (column vector).

	
getformat()

	Format of a matrix representation as a string.

	
getmaxprint()

	Maximum number of elements to display when printed.

	
getnnz(axis=None)

	Number of stored values, including explicit zeros.

	Parameters

	axis (None, 0, or 1) – Select between the number of values across the whole matrix, in
each column, or in each row.

See also

	count_nonzero
	Number of non-zero entries

	
getrow(i)

	Returns a copy of row i of the matrix, as a (1 x n)
CSR matrix (row vector).

	
log1p()

	Element-wise log1p.

See numpy.log1p [https://numpy.org/doc/stable/reference/generated/numpy.log1p.html#numpy.log1p] for more information.

	
max(axis=None, out=None)

	Return the maximum of the matrix or maximum along an axis.
This takes all elements into account, not just the non-zero ones.

	Parameters

	
	axis ({-2, -1, 0, 1, None} optional) – Axis along which the sum is computed. The default is to
compute the maximum over all the matrix elements, returning
a scalar (i.e., axis = None [https://docs.python.org/3/library/constants.html#None]).

	out (None, optional) – This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except
for the default value, as this argument is not used.

	Returns

	amax – Maximum of a. If axis is None, the result is a scalar value.
If axis is given, the result is a sparse.coo_matrix of dimension
a.ndim - 1.

	Return type

	coo_matrix or scalar

See also

	min
	The minimum value of a sparse matrix along a given axis.

	numpy.matrix.max [https://numpy.org/doc/stable/reference/generated/numpy.matrix.max.html#numpy.matrix.max]
	NumPy’s implementation of ‘max’ for matrices

	
maximum(other)

	Element-wise maximum between this and another matrix.

	
mean(axis=None, dtype=None, out=None)

	Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken
over all elements in the matrix by default, otherwise over the
specified axis. float64 intermediate and return values are used
for integer inputs.

	Parameters

	
	axis ({-2, -1, 0, 1, None} optional) – Axis along which the mean is computed. The default is to compute
the mean of all elements in the matrix (i.e., axis = None [https://docs.python.org/3/library/constants.html#None]).

	dtype (data-type, optional) – Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the
input dtype.

New in version 0.18.0.

	out (np.matrix, optional) – Alternative output matrix in which to place the result. It must
have the same shape as the expected output, but the type of the
output values will be cast if necessary.

New in version 0.18.0.

	Returns

	m

	Return type

	np.matrix

See also

	numpy.matrix.mean [https://numpy.org/doc/stable/reference/generated/numpy.matrix.mean.html#numpy.matrix.mean]
	NumPy’s implementation of ‘mean’ for matrices

	
min(axis=None, out=None)

	Return the minimum of the matrix or maximum along an axis.
This takes all elements into account, not just the non-zero ones.

	Parameters

	
	axis ({-2, -1, 0, 1, None} optional) – Axis along which the sum is computed. The default is to
compute the minimum over all the matrix elements, returning
a scalar (i.e., axis = None [https://docs.python.org/3/library/constants.html#None]).

	out (None, optional) – This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.

	Returns

	amin – Minimum of a. If axis is None, the result is a scalar value.
If axis is given, the result is a sparse.coo_matrix of dimension
a.ndim - 1.

	Return type

	coo_matrix or scalar

See also

	max
	The maximum value of a sparse matrix along a given axis.

	numpy.matrix.min [https://numpy.org/doc/stable/reference/generated/numpy.matrix.min.html#numpy.matrix.min]
	NumPy’s implementation of ‘min’ for matrices

	
minimum(other)

	Element-wise minimum between this and another matrix.

	
multiply(other)

	Point-wise multiplication by another matrix, vector, or
scalar.

	
nonzero()

	nonzero indices

Returns a tuple of arrays (row,col) containing the indices
of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

	
power(n, dtype=None)

	This function performs element-wise power.

	Parameters

	
	n (n is a scalar) –

	dtype (If dtype is not specified, the current dtype will be preserved.) –

	
prune()

	Remove empty space after all non-zero elements.

	
rad2deg()

	Element-wise rad2deg.

See numpy.rad2deg [https://numpy.org/doc/stable/reference/generated/numpy.rad2deg.html#numpy.rad2deg] for more information.

	
reshape(self, shape, order='C', copy=False)

	Gives a new shape to a sparse matrix without changing its data.

	Parameters

	
	shape (length-2 tuple of ints) – The new shape should be compatible with the original shape.

	order ({'C', 'F'}, optional) – Read the elements using this index order. ‘C’ means to read and
write the elements using C-like index order; e.g., read entire first
row, then second row, etc. ‘F’ means to read and write the elements
using Fortran-like index order; e.g., read entire first column, then
second column, etc.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Indicates whether or not attributes of self should be copied
whenever possible. The degree to which attributes are copied varies
depending on the type of sparse matrix being used.

	Returns

	reshaped_matrix – A sparse matrix with the given shape, not necessarily of the same
format as the current object.

	Return type

	sparse matrix

See also

	numpy.matrix.reshape [https://numpy.org/doc/stable/reference/generated/numpy.matrix.reshape.html#numpy.matrix.reshape]
	NumPy’s implementation of ‘reshape’ for matrices

	
resize(*shape)

	Resize the matrix in-place to dimensions given by shape

Any elements that lie within the new shape will remain at the same
indices, while non-zero elements lying outside the new shape are
removed.

	Parameters

	shape ((int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])) – number of rows and columns in the new matrix

Notes

The semantics are not identical to numpy.ndarray.resize [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.resize.html#numpy.ndarray.resize] or
numpy.resize [https://numpy.org/doc/stable/reference/generated/numpy.resize.html#numpy.resize]. Here, the same data will be maintained at each index
before and after reshape, if that index is within the new bounds. In
numpy, resizing maintains contiguity of the array, moving elements
around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes
(arrays, etc.) will be modified in place or replaced with new objects.

	
rint()

	Element-wise rint.

See numpy.rint [https://numpy.org/doc/stable/reference/generated/numpy.rint.html#numpy.rint] for more information.

	
set_shape(shape)

	See reshape.

	
setdiag(values, k=0)

	Set diagonal or off-diagonal elements of the array.

	Parameters

	
	values (array_like) – New values of the diagonal elements.

Values may have any length. If the diagonal is longer than values,
then the remaining diagonal entries will not be set. If values are
longer than the diagonal, then the remaining values are ignored.

If a scalar value is given, all of the diagonal is set to it.

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which off-diagonal to set, corresponding to elements a[i,i+k].
Default: 0 (the main diagonal).

	
sign()

	Element-wise sign.

See numpy.sign [https://numpy.org/doc/stable/reference/generated/numpy.sign.html#numpy.sign] for more information.

	
sin()

	Element-wise sin.

See numpy.sin [https://numpy.org/doc/stable/reference/generated/numpy.sin.html#numpy.sin] for more information.

	
sinh()

	Element-wise sinh.

See numpy.sinh [https://numpy.org/doc/stable/reference/generated/numpy.sinh.html#numpy.sinh] for more information.

	
sort_indices()

	Sort the indices of this matrix in place

	
sorted_indices()

	Return a copy of this matrix with sorted indices

	
sqrt()

	Element-wise sqrt.

See numpy.sqrt [https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html#numpy.sqrt] for more information.

	
sum(axis=None, dtype=None, out=None)

	Sum the matrix elements over a given axis.

	Parameters

	
	axis ({-2, -1, 0, 1, None} optional) – Axis along which the sum is computed. The default is to
compute the sum of all the matrix elements, returning a scalar
(i.e., axis = None [https://docs.python.org/3/library/constants.html#None]).

	dtype (dtype, optional) – The type of the returned matrix and of the accumulator in which
the elements are summed. The dtype of a is used by default
unless a has an integer dtype of less precision than the default
platform integer. In that case, if a is signed then the platform
integer is used while if a is unsigned then an unsigned integer
of the same precision as the platform integer is used.

New in version 0.18.0.

	out (np.matrix, optional) – Alternative output matrix in which to place the result. It must
have the same shape as the expected output, but the type of the
output values will be cast if necessary.

New in version 0.18.0.

	Returns

	sum_along_axis – A matrix with the same shape as self, with the specified
axis removed.

	Return type

	np.matrix

See also

	numpy.matrix.sum [https://numpy.org/doc/stable/reference/generated/numpy.matrix.sum.html#numpy.matrix.sum]
	NumPy’s implementation of ‘sum’ for matrices

	
sum_duplicates()

	Eliminate duplicate matrix entries by adding them together

This is an in place operation.

	
tan()

	Element-wise tan.

See numpy.tan [https://numpy.org/doc/stable/reference/generated/numpy.tan.html#numpy.tan] for more information.

	
tanh()

	Element-wise tanh.

See numpy.tanh [https://numpy.org/doc/stable/reference/generated/numpy.tanh.html#numpy.tanh] for more information.

	
toarray(order=None, out=None)

	Return a dense ndarray representation of this matrix.

	Parameters

	
	order ({'C', 'F'}, optional) – Whether to store multidimensional data in C (row-major)
or Fortran (column-major) order in memory. The default
is ‘None’, which provides no ordering guarantees.
Cannot be specified in conjunction with the out
argument.

	out (ndarray, 2-D, optional) – If specified, uses this array as the output buffer
instead of allocating a new array to return. The provided
array must have the same shape and dtype as the sparse
matrix on which you are calling the method. For most
sparse types, out is required to be memory contiguous
(either C or Fortran ordered).

	Returns

	arr – An array with the same shape and containing the same
data represented by the sparse matrix, with the requested
memory order. If out was passed, the same object is
returned after being modified in-place to contain the
appropriate values.

	Return type

	ndarray, 2-D

	
tobsr(blocksize=None, copy=True)

	Convert this matrix to Block Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and
the resultant bsr_matrix.

When blocksize=(R, C) is provided, it will be used for construction of
the bsr_matrix.

	
tocoo(copy=True)

	Convert this matrix to COOrdinate format.

With copy=False, the data/indices may be shared between this matrix and
the resultant coo_matrix.

	
tocsc(copy=False)

	Convert this matrix to Compressed Sparse Column format.

With copy=False, the data/indices may be shared between this matrix and
the resultant csc_matrix.

	
tocsr(copy=False)

	Convert this matrix to Compressed Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and
the resultant csr_matrix.

	
todense(order=None, out=None)

	Return a dense matrix representation of this matrix.

	Parameters

	
	order ({'C', 'F'}, optional) – Whether to store multi-dimensional data in C (row-major)
or Fortran (column-major) order in memory. The default
is ‘None’, which provides no ordering guarantees.
Cannot be specified in conjunction with the out
argument.

	out (ndarray, 2-D, optional) – If specified, uses this array (or numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix]) as the
output buffer instead of allocating a new array to
return. The provided array must have the same shape and
dtype as the sparse matrix on which you are calling the
method.

	Returns

	arr – A NumPy matrix object with the same shape and containing
the same data represented by the sparse matrix, with the
requested memory order. If out was passed and was an
array (rather than a numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix]), it will be filled
with the appropriate values and returned wrapped in a
numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] object that shares the same memory.

	Return type

	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix], 2-D

	
todia(copy=False)

	Convert this matrix to sparse DIAgonal format.

With copy=False, the data/indices may be shared between this matrix and
the resultant dia_matrix.

	
todok(copy=False)

	Convert this matrix to Dictionary Of Keys format.

With copy=False, the data/indices may be shared between this matrix and
the resultant dok_matrix.

	
tolil(copy=False)

	Convert this matrix to List of Lists format.

With copy=False, the data/indices may be shared between this matrix and
the resultant lil_matrix.

	
trace(offset=0)

	Returns the sum along diagonals of the sparse matrix.

	Parameters

	offset (int [https://docs.python.org/3/library/functions.html#int], optional) – Which diagonal to get, corresponding to elements a[i, i+offset].
Default: 0 (the main diagonal).

	
transpose(axes=None, copy=False)

	Reverses the dimensions of the sparse matrix.

	Parameters

	
	axes (None, optional) – This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except
for the default value.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Indicates whether or not attributes of self should be
copied whenever possible. The degree to which attributes
are copied varies depending on the type of sparse matrix
being used.

	Returns

	p

	Return type

	self with the dimensions reversed.

See also

	numpy.matrix.transpose [https://numpy.org/doc/stable/reference/generated/numpy.matrix.transpose.html#numpy.matrix.transpose]
	NumPy’s implementation of ‘transpose’ for matrices

	
trunc()

	Element-wise trunc.

See numpy.trunc [https://numpy.org/doc/stable/reference/generated/numpy.trunc.html#numpy.trunc] for more information.

	
__array_priority__ = 10.1

	

	
__hash__ = None

	

	
property dtype

	

	
format = 'csr'

	

	
property has_canonical_format

	Determine whether the matrix has sorted indices and no duplicates

	Returns
	
	True: if the above applies

	False: otherwise

has_canonical_format implies has_sorted_indices, so if the latter flag
is False, so will the former be; if the former is found True, the
latter flag is also set.

	
property has_sorted_indices

	Determine whether the matrix has sorted indices

	Returns
	
	True: if the indices of the matrix are in sorted order

	False: otherwise

	
ndim = 2

	

	
property nnz

	Number of stored values, including explicit zeros.

See also

	count_nonzero
	Number of non-zero entries

	
property shape

	Get shape of a matrix.

egttools.analytical.sed_analytical.lil_matrix

	
class lil_matrix(arg1, shape=None, dtype=None, copy=False)

	Bases: spmatrix, IndexMixin

Row-based list of lists sparse matrix

This is a structure for constructing sparse matrices incrementally.
Note that inserting a single item can take linear time in the worst case;
to construct a matrix efficiently, make sure the items are pre-sorted by
index, per row.

	This can be instantiated in several ways:
	
	lil_matrix(D)
	with a dense matrix or rank-2 ndarray D

	lil_matrix(S)
	with another sparse matrix S (equivalent to S.tolil())

	lil_matrix((M, N), [dtype])
	to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype=’d’.

	
dtype

	Data type of the matrix

	Type

	dtype

	
shape

	Shape of the matrix

	Type

	2-tuple

	
ndim

	Number of dimensions (this is always 2)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
nnz

	Number of stored values, including explicit zeros

	
data

	LIL format data array of the matrix

	
rows

	LIL format row index array of the matrix

Notes

Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.

	Advantages of the LIL format
	
	supports flexible slicing

	changes to the matrix sparsity structure are efficient

	Disadvantages of the LIL format
	
	arithmetic operations LIL + LIL are slow (consider CSR or CSC)

	slow column slicing (consider CSC)

	slow matrix vector products (consider CSR or CSC)

	Intended Usage
	
	LIL is a convenient format for constructing sparse matrices

	once a matrix has been constructed, convert to CSR or
CSC format for fast arithmetic and matrix vector operations

	consider using the COO format when constructing large matrices

	Data Structure
	
	An array (self.rows) of rows, each of which is a sorted
list of column indices of non-zero elements.

	The corresponding nonzero values are stored in similar
fashion in self.data.

Methods

	asformat

	Return this matrix in the passed format.

	asfptype

	Upcast matrix to a floating point format (if necessary)

	astype

	Cast the matrix elements to a specified type.

	conj

	Element-wise complex conjugation.

	conjugate

	Element-wise complex conjugation.

	copy

	Returns a copy of this matrix.

	count_nonzero

	Number of non-zero entries, equivalent to

	diagonal

	Returns the kth diagonal of the matrix.

	dot

	Ordinary dot product

	getH

	Return the Hermitian transpose of this matrix.

	get_shape

	Get shape of a matrix.

	getcol

	Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

	getformat

	Format of a matrix representation as a string.

	getmaxprint

	Maximum number of elements to display when printed.

	getnnz

	Number of stored values, including explicit zeros.

	getrow

	Returns a copy of the 'i'th row.

	getrowview

	Returns a view of the 'i'th row (without copying).

	maximum

	Element-wise maximum between this and another matrix.

	mean

	Compute the arithmetic mean along the specified axis.

	minimum

	Element-wise minimum between this and another matrix.

	multiply

	Point-wise multiplication by another matrix

	nonzero

	nonzero indices

	power

	Element-wise power.

	reshape

	Gives a new shape to a sparse matrix without changing its data.

	resize

	Resize the matrix in-place to dimensions given by shape

	set_shape

	See reshape.

	setdiag

	Set diagonal or off-diagonal elements of the array.

	sum

	Sum the matrix elements over a given axis.

	toarray

	Return a dense ndarray representation of this matrix.

	tobsr

	Convert this matrix to Block Sparse Row format.

	tocoo

	Convert this matrix to COOrdinate format.

	tocsc

	Convert this matrix to Compressed Sparse Column format.

	tocsr

	Convert this matrix to Compressed Sparse Row format.

	todense

	Return a dense matrix representation of this matrix.

	todia

	Convert this matrix to sparse DIAgonal format.

	todok

	Convert this matrix to Dictionary Of Keys format.

	tolil

	Convert this matrix to List of Lists format.

	trace

	Returns the sum along diagonals of the sparse matrix.

	transpose

	Reverses the dimensions of the sparse matrix.

Attributes

	format

	

	ndim

	

	nnz

	Number of stored values, including explicit zeros.

	shape

	Get shape of a matrix.

	
__abs__()

	

	
__add__(other)

	

	
__bool__()

	

	
__div__(other)

	

	
__eq__(other)

	Return self==value.

	
__ge__(other)

	Return self>=value.

	
__getattr__(attr)

	

	
__getitem__(key)

	

	
__gt__(other)

	Return self>value.

	
__iadd__(other)

	

	
__idiv__(other)

	

	
__imul__(other)

	

	
__init__(arg1, shape=None, dtype=None, copy=False)

	

	
__isub__(other)

	

	
__iter__()

	

	
__itruediv__(other)

	

	
__le__(other)

	Return self<=value.

	
__len__()

	

	
__lt__(other)

	Return self<value.

	
__matmul__(other)

	

	
__mul__(other)

	

	
__ne__(other)

	Return self!=value.

	
__neg__()

	

	
__nonzero__()

	

	
__pow__(other)

	

	
__radd__(other)

	

	
__rdiv__(other)

	

	
__repr__()

	Return repr(self).

	
__rmatmul__(other)

	

	
__rmul__(other)

	

	
__round__(ndigits=0)

	

	
__rsub__(other)

	

	
__rtruediv__(other)

	

	
__setitem__(key, x)

	

	
__str__()

	Return str(self).

	
__sub__(other)

	

	
__truediv__(other)

	

	
asformat(format, copy=False)

	Return this matrix in the passed format.

	Parameters

	
	format ({str, None}) – The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …)
or None for no conversion.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the result is guaranteed to not share data with self.

	Returns

	A

	Return type

	This matrix in the passed format.

	
asfptype()

	Upcast matrix to a floating point format (if necessary)

	
astype(dtype, casting='unsafe', copy=True)

	Cast the matrix elements to a specified type.

	Parameters

	
	dtype (string or numpy dtype) – Typecode or data-type to which to cast the data.

	casting ({'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional) – Controls what kind of data casting may occur.
Defaults to ‘unsafe’ for backwards compatibility.
‘no’ means the data types should not be cast at all.
‘equiv’ means only byte-order changes are allowed.
‘safe’ means only casts which can preserve values are allowed.
‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.
‘unsafe’ means any data conversions may be done.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If copy is False [https://docs.python.org/3/library/constants.html#False], the result might share some memory with this
matrix. If copy is True [https://docs.python.org/3/library/constants.html#True], it is guaranteed that the result and
this matrix do not share any memory.

	
conj(copy=True)

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the result is guaranteed to not share data with self.

	Returns

	A

	Return type

	The element-wise complex conjugate.

	
conjugate(copy=True)

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the result is guaranteed to not share data with self.

	Returns

	A

	Return type

	The element-wise complex conjugate.

	
copy()

	Returns a copy of this matrix.

No data/indices will be shared between the returned value and current
matrix.

	
count_nonzero()

	Number of non-zero entries, equivalent to

np.count_nonzero(a.toarray())

Unlike getnnz() and the nnz property, which return the number of stored
entries (the length of the data attribute), this method counts the
actual number of non-zero entries in data.

	
diagonal(k=0)

	Returns the kth diagonal of the matrix.

	Parameters

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which diagonal to get, corresponding to elements a[i, i+k].
Default: 0 (the main diagonal).

New in version 1.0.

See also

	numpy.diagonal [https://numpy.org/doc/stable/reference/generated/numpy.diagonal.html#numpy.diagonal]
	Equivalent numpy function.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])

	
dot(other)

	Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([1, -3, -1], dtype=int64)

	
getH()

	Return the Hermitian transpose of this matrix.

See also

	numpy.matrix.getH [https://numpy.org/doc/stable/reference/generated/numpy.matrix.getH.html#numpy.matrix.getH]
	NumPy’s implementation of getH for matrices

	
get_shape()

	Get shape of a matrix.

	
getcol(j)

	Returns a copy of column j of the matrix, as an (m x 1) sparse
matrix (column vector).

	
getformat()

	Format of a matrix representation as a string.

	
getmaxprint()

	Maximum number of elements to display when printed.

	
getnnz(axis=None)

	Number of stored values, including explicit zeros.

	Parameters

	axis (None, 0, or 1) – Select between the number of values across the whole matrix, in
each column, or in each row.

See also

	count_nonzero
	Number of non-zero entries

	
getrow(i)

	Returns a copy of the ‘i’th row.

	
getrowview(i)

	Returns a view of the ‘i’th row (without copying).

	
maximum(other)

	Element-wise maximum between this and another matrix.

	
mean(axis=None, dtype=None, out=None)

	Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken
over all elements in the matrix by default, otherwise over the
specified axis. float64 intermediate and return values are used
for integer inputs.

	Parameters

	
	axis ({-2, -1, 0, 1, None} optional) – Axis along which the mean is computed. The default is to compute
the mean of all elements in the matrix (i.e., axis = None [https://docs.python.org/3/library/constants.html#None]).

	dtype (data-type, optional) – Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the
input dtype.

New in version 0.18.0.

	out (np.matrix, optional) – Alternative output matrix in which to place the result. It must
have the same shape as the expected output, but the type of the
output values will be cast if necessary.

New in version 0.18.0.

	Returns

	m

	Return type

	np.matrix

See also

	numpy.matrix.mean [https://numpy.org/doc/stable/reference/generated/numpy.matrix.mean.html#numpy.matrix.mean]
	NumPy’s implementation of ‘mean’ for matrices

	
minimum(other)

	Element-wise minimum between this and another matrix.

	
multiply(other)

	Point-wise multiplication by another matrix

	
nonzero()

	nonzero indices

Returns a tuple of arrays (row,col) containing the indices
of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

	
power(n, dtype=None)

	Element-wise power.

	
reshape(self, shape, order='C', copy=False)

	Gives a new shape to a sparse matrix without changing its data.

	Parameters

	
	shape (length-2 tuple of ints) – The new shape should be compatible with the original shape.

	order ({'C', 'F'}, optional) – Read the elements using this index order. ‘C’ means to read and
write the elements using C-like index order; e.g., read entire first
row, then second row, etc. ‘F’ means to read and write the elements
using Fortran-like index order; e.g., read entire first column, then
second column, etc.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Indicates whether or not attributes of self should be copied
whenever possible. The degree to which attributes are copied varies
depending on the type of sparse matrix being used.

	Returns

	reshaped_matrix – A sparse matrix with the given shape, not necessarily of the same
format as the current object.

	Return type

	sparse matrix

See also

	numpy.matrix.reshape [https://numpy.org/doc/stable/reference/generated/numpy.matrix.reshape.html#numpy.matrix.reshape]
	NumPy’s implementation of ‘reshape’ for matrices

	
resize(*shape)

	Resize the matrix in-place to dimensions given by shape

Any elements that lie within the new shape will remain at the same
indices, while non-zero elements lying outside the new shape are
removed.

	Parameters

	shape ((int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])) – number of rows and columns in the new matrix

Notes

The semantics are not identical to numpy.ndarray.resize [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.resize.html#numpy.ndarray.resize] or
numpy.resize [https://numpy.org/doc/stable/reference/generated/numpy.resize.html#numpy.resize]. Here, the same data will be maintained at each index
before and after reshape, if that index is within the new bounds. In
numpy, resizing maintains contiguity of the array, moving elements
around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes
(arrays, etc.) will be modified in place or replaced with new objects.

	
set_shape(shape)

	See reshape.

	
setdiag(values, k=0)

	Set diagonal or off-diagonal elements of the array.

	Parameters

	
	values (array_like) – New values of the diagonal elements.

Values may have any length. If the diagonal is longer than values,
then the remaining diagonal entries will not be set. If values are
longer than the diagonal, then the remaining values are ignored.

If a scalar value is given, all of the diagonal is set to it.

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which off-diagonal to set, corresponding to elements a[i,i+k].
Default: 0 (the main diagonal).

	
sum(axis=None, dtype=None, out=None)

	Sum the matrix elements over a given axis.

	Parameters

	
	axis ({-2, -1, 0, 1, None} optional) – Axis along which the sum is computed. The default is to
compute the sum of all the matrix elements, returning a scalar
(i.e., axis = None [https://docs.python.org/3/library/constants.html#None]).

	dtype (dtype, optional) – The type of the returned matrix and of the accumulator in which
the elements are summed. The dtype of a is used by default
unless a has an integer dtype of less precision than the default
platform integer. In that case, if a is signed then the platform
integer is used while if a is unsigned then an unsigned integer
of the same precision as the platform integer is used.

New in version 0.18.0.

	out (np.matrix, optional) – Alternative output matrix in which to place the result. It must
have the same shape as the expected output, but the type of the
output values will be cast if necessary.

New in version 0.18.0.

	Returns

	sum_along_axis – A matrix with the same shape as self, with the specified
axis removed.

	Return type

	np.matrix

See also

	numpy.matrix.sum [https://numpy.org/doc/stable/reference/generated/numpy.matrix.sum.html#numpy.matrix.sum]
	NumPy’s implementation of ‘sum’ for matrices

	
toarray(order=None, out=None)

	Return a dense ndarray representation of this matrix.

	Parameters

	
	order ({'C', 'F'}, optional) – Whether to store multidimensional data in C (row-major)
or Fortran (column-major) order in memory. The default
is ‘None’, which provides no ordering guarantees.
Cannot be specified in conjunction with the out
argument.

	out (ndarray, 2-D, optional) – If specified, uses this array as the output buffer
instead of allocating a new array to return. The provided
array must have the same shape and dtype as the sparse
matrix on which you are calling the method. For most
sparse types, out is required to be memory contiguous
(either C or Fortran ordered).

	Returns

	arr – An array with the same shape and containing the same
data represented by the sparse matrix, with the requested
memory order. If out was passed, the same object is
returned after being modified in-place to contain the
appropriate values.

	Return type

	ndarray, 2-D

	
tobsr(blocksize=None, copy=False)

	Convert this matrix to Block Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and
the resultant bsr_matrix.

When blocksize=(R, C) is provided, it will be used for construction of
the bsr_matrix.

	
tocoo(copy=False)

	Convert this matrix to COOrdinate format.

With copy=False, the data/indices may be shared between this matrix and
the resultant coo_matrix.

	
tocsc(copy=False)

	Convert this matrix to Compressed Sparse Column format.

With copy=False, the data/indices may be shared between this matrix and
the resultant csc_matrix.

	
tocsr(copy=False)

	Convert this matrix to Compressed Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and
the resultant csr_matrix.

	
todense(order=None, out=None)

	Return a dense matrix representation of this matrix.

	Parameters

	
	order ({'C', 'F'}, optional) – Whether to store multi-dimensional data in C (row-major)
or Fortran (column-major) order in memory. The default
is ‘None’, which provides no ordering guarantees.
Cannot be specified in conjunction with the out
argument.

	out (ndarray, 2-D, optional) – If specified, uses this array (or numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix]) as the
output buffer instead of allocating a new array to
return. The provided array must have the same shape and
dtype as the sparse matrix on which you are calling the
method.

	Returns

	arr – A NumPy matrix object with the same shape and containing
the same data represented by the sparse matrix, with the
requested memory order. If out was passed and was an
array (rather than a numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix]), it will be filled
with the appropriate values and returned wrapped in a
numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] object that shares the same memory.

	Return type

	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix], 2-D

	
todia(copy=False)

	Convert this matrix to sparse DIAgonal format.

With copy=False, the data/indices may be shared between this matrix and
the resultant dia_matrix.

	
todok(copy=False)

	Convert this matrix to Dictionary Of Keys format.

With copy=False, the data/indices may be shared between this matrix and
the resultant dok_matrix.

	
tolil(copy=False)

	Convert this matrix to List of Lists format.

With copy=False, the data/indices may be shared between this matrix and
the resultant lil_matrix.

	
trace(offset=0)

	Returns the sum along diagonals of the sparse matrix.

	Parameters

	offset (int [https://docs.python.org/3/library/functions.html#int], optional) – Which diagonal to get, corresponding to elements a[i, i+offset].
Default: 0 (the main diagonal).

	
transpose(axes=None, copy=False)

	Reverses the dimensions of the sparse matrix.

	Parameters

	
	axes (None, optional) – This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except
for the default value.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Indicates whether or not attributes of self should be
copied whenever possible. The degree to which attributes
are copied varies depending on the type of sparse matrix
being used.

	Returns

	p

	Return type

	self with the dimensions reversed.

See also

	numpy.matrix.transpose [https://numpy.org/doc/stable/reference/generated/numpy.matrix.transpose.html#numpy.matrix.transpose]
	NumPy’s implementation of ‘transpose’ for matrices

	
__array_priority__ = 10.1

	

	
__hash__ = None

	

	
format = 'lil'

	

	
ndim = 2

	

	
property nnz

	Number of stored values, including explicit zeros.

See also

	count_nonzero
	Number of non-zero entries

	
property shape

	Get shape of a matrix.

egttools.analytical.sed_analytical.permutations

	
class permutations(iterable, r=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Return successive r-length permutations of elements in the iterable.

permutations(range(3), 2) –> (0,1), (0,2), (1,0), (1,2), (2,0), (2,1)

Methods

	
__getattribute__(name, /)

	Return getattr(self, name).

	
__iter__()

	Implement iter(self).

	
__new__(**kwargs)

	

	
__next__()

	Implement next(self).

	
__reduce__()

	Return state information for pickling.

	
__sizeof__()

	Returns size in memory, in bytes.

egttools.analytical.utils

Functions

	calculate_gradients

	Calculates the gradients of selection of each of the states given in population_states.

	check_if_point_in_unit_simplex

	Checks if a point (in barycentric coordinates) is inside the unit simplex.

	check_if_there_is_random_drift

	Checks if there is random drift along the edge between two strategies in the simplex.

	check_replicator_stability_pairwise_games

	Calculates the stability of the roots assuming that they are from a system governed by the replicator equation (this function uses the Jacobian of the replicator equation in pairwise games to calculate the stability).

	eigvals

	Compute eigenvalues from an ordinary or generalized eigenvalue problem.

	find_roots

	Searches for the roots of the given differential equation.

	find_roots_and_stability

	Searches for the roots of the differential equation gradient_function and calculates the stability based on an estimate of the Jacobian.

	get_pairwise_gradient_from_replicator

	Calculate the gradient for strategy/type i at the edges of the simplex (when there are only two strategies in the population i and j).

	get_pairwise_gradient_from_replicator_n_player

	Calculate the gradient for strategy/type i at the edges of the simplex (when there are only two strategies in the population i and j).

	replicator_equation

	Produces the discrete time derivative of the replicator dynamics

	replicator_equation_n_player

	Replicator dynamics in N-player games

	root

	Find a root of a vector function.

	sample_unit_simplex

	Samples uniformly at random the unit simplex with nb_strategies dimensionse.

Classes

	StochDynamics

	A class containing methods to calculate the stochastic evolutionary dynamics of a population.

egttools.analytical.utils.calculate_gradients

	
calculate_gradients(population_states, gradient_function)

	Calculates the gradients of selection of each of the states given in population_states.

	Parameters

	
	population_states (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A numpy array of shape (m,n) where n is the number of strategies in the population and
m the number of states for which the gradient should be calculated.

	gradient_function (Callable[[np.ndarray], np.ndarray]) – A function which accepts a vector of shape (n,) containing the frequencies of each
strategy/type in the population, and returns another vector of shape (n,) containing
the gradient for each strategy.

	Returns

	A numpy array of shape (m,n) containing the gradients for
each of the input states given in population_states.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

egttools.analytical.utils.check_if_point_in_unit_simplex

	
check_if_point_in_unit_simplex(point, delta=1e-12)

	Checks if a point (in barycentric coordinates) is inside the unit simplex.

	Parameters

	
	point (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The barycentric coordinates of the point.

	delta (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance to consider a point outside the unit simplex.

	Returns

	Whether the point is inside the unit simplex.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

egttools.analytical.utils.check_if_there_is_random_drift

	
check_if_there_is_random_drift(payoff_matrix, population_size=None, group_size=2, beta=None, nb_points=10, atol=1e-07)

	Checks if there is random drift along the edge between two strategies in the simplex.

	Parameters

	
	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The square matrix of payoffs. If the game is pairwise (group_size = 2) then each entry
represents the payoff of the row strategy vs the column strategy. If the group_size > 2, then
each entry should be a function that will return the payoff of the row strategy in a group of size N
with N-k members of the column strategy. If you only have a matrix where the columns
represent all possible game states, then you can use the function egttools.utils.transform_payoffs_to_pairwise
to get a matrix in the correct form.

	population_size (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The size of the population. If this value is not given, we assume that
we calculate the dynamics in infinite populations using the replicator_equation.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the group. If you specify population size, you should also specify this value. By default we assume
that the game is pairwise.

	beta (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The intensity of selection.If you specify population size, you should also specify this value.

	nb_points (int [https://docs.python.org/3/library/functions.html#int]) – Number of points for which to check the gradient. It is 10 by default.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance to consider a value zero

	Returns

	A list of tuples indicating the undirected edged where there should be random drift.

	Return type

	List[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]

egttools.analytical.utils.check_replicator_stability_pairwise_games

	
check_replicator_stability_pairwise_games(stationary_points, payoff_matrix, atol_neg=0.0001, atol_pos=0.0001, atol_zero=0.0001)

	Calculates the stability of the roots assuming that they are from a system governed by the replicator
equation (this function uses the Jacobian of the replicator equation in pairwise games to calculate the
stability).

	Parameters

	
	stationary_points (List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – a list of stationary points (represented as numpy.ndarray).

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a payoff matrix represented as a numpy.ndarray.

	atol_neg (float [https://docs.python.org/3/library/functions.html#float]) – tolerance to consider a value negative.

	atol_pos (float [https://docs.python.org/3/library/functions.html#float]) – tolerance to consider a value positive.

	atol_zero (float [https://docs.python.org/3/library/functions.html#float]) – tolerance to determine if a value is zero.

	Returns

	A list of integers indicating the stability of the stationary points for the replicator equation:
1 - stable
-1 - unstable
0 - saddle

	Return type

	List[int [https://docs.python.org/3/library/functions.html#int]]

egttools.analytical.utils.eigvals

	
eigvals(a, b=None, overwrite_a=False, check_finite=True, homogeneous_eigvals=False)

	Compute eigenvalues from an ordinary or generalized eigenvalue problem.

Find eigenvalues of a general matrix:

a vr[:,i] = w[i] b vr[:,i]

	Parameters

	
	a ((M, M) array_like) – A complex or real matrix whose eigenvalues and eigenvectors
will be computed.

	b ((M, M) array_like, optional) – Right-hand side matrix in a generalized eigenvalue problem.
If omitted, identity matrix is assumed.

	overwrite_a (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite data in a (may improve performance)

	check_finite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities
or NaNs.

	homogeneous_eigvals (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, return the eigenvalues in homogeneous coordinates.
In this case w is a (2, M) array so that:

w[1,i] a vr[:,i] = w[0,i] b vr[:,i]

Default is False.

	Returns

	w – The eigenvalues, each repeated according to its multiplicity
but not in any specific order. The shape is (M,) unless
homogeneous_eigvals=True.

	Return type

	(M,) or (2, M) double or complex ndarray

	Raises

	LinAlgError – If eigenvalue computation does not converge

See also

	eig
	eigenvalues and right eigenvectors of general arrays.

	eigvalsh
	eigenvalues of symmetric or Hermitian arrays

	eigvals_banded
	eigenvalues for symmetric/Hermitian band matrices

	eigvalsh_tridiagonal
	eigenvalues of symmetric/Hermitian tridiagonal matrices

Examples

>>> from scipy import linalg
>>> a = np.array([[0., -1.], [1., 0.]])
>>> linalg.eigvals(a)
array([0.+1.j, 0.-1.j])

>>> b = np.array([[0., 1.], [1., 1.]])
>>> linalg.eigvals(a, b)
array([1.+0.j, -1.+0.j])

>>> a = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]])
>>> linalg.eigvals(a, homogeneous_eigvals=True)
array([[3.+0.j, 8.+0.j, 7.+0.j],
 [1.+0.j, 1.+0.j, 1.+0.j]])

egttools.analytical.utils.find_roots

	
find_roots(gradient_function, nb_strategies, nb_initial_random_points=3, atol=1e-07, tol_close_points=0.0001, method='hybr')

	Searches for the roots of the given differential equation.

	Parameters

	
	gradient_function (Callable[[np.ndarray], np.ndarray]) – function that returns a numpy.ndarray with the gradient of every strategy/type given a
current population state.

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies/types present in the population.

	nb_initial_random_points (int [https://docs.python.org/3/library/functions.html#int]) – number of random points to use as initial states for the root function. These are
additional to the vertex of the simplex.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – tolerance for considering that a point is in the simplex.

	tol_close_points (float [https://docs.python.org/3/library/functions.html#float]) – tolerance for considering that two points are equal.

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – one of the options described in scipy.optimize.root
(see https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html)

	Returns

	A list of tuples with the identified roots/stationary points.

	Return type

	List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

egttools.analytical.utils.find_roots_and_stability

	
find_roots_and_stability(gradient_function, nb_strategies, nb_initial_random_points=3, atol=1e-07, atol_neg=0.0001, atol_pos=0.0001, atol_zero=0.0001, tol_close_points=0.0001, method='hybr')

	Searches for the roots of the differential equation gradient_function and calculates the stability based
on an estimate of the Jacobian. This estimate is often imprecise which leads to wrong results.

	Parameters

	
	gradient_function (Callable[[np.ndarray], np.ndarray]) – function that returns a numpy.ndarray with the gradient of every strategy/type given a
current population state.

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies/types present in the population.

	nb_initial_random_points (int [https://docs.python.org/3/library/functions.html#int]) – number of random points to use as initial states for the root function. These are
additional to the vertex of the simplex.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – tolerance for considering that a point is in the simplex.

	atol_neg (float [https://docs.python.org/3/library/functions.html#float]) – tolerance to consider a value negative.

	atol_pos (float [https://docs.python.org/3/library/functions.html#float]) – tolerance to consider a value positive.

	atol_zero (float [https://docs.python.org/3/library/functions.html#float]) – tolerance to determine if a value is zero.

	tol_close_points (float [https://docs.python.org/3/library/functions.html#float]) – tolerance for considering that two points are equal.

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – one of the options described in scipy.optimize.root
(see https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html)

	Returns

	A tuple containing the list of roots and a list with 1 indicating stable points, 0 saddle points
and -1 unstable points.

	Return type

	Tuple[List[np.array], List[int [https://docs.python.org/3/library/functions.html#int]]]

egttools.analytical.utils.get_pairwise_gradient_from_replicator

	
get_pairwise_gradient_from_replicator(i, j, x, nb_strategies, payoffs, freq_array=None)

	Calculate the gradient for strategy/type i at the edges of the simplex (when there are
only two strategies in the population i and j).

	Parameters

	
	i (int [https://docs.python.org/3/library/functions.html#int]) – index of the strategy whose gradient we wish to calculate

	j (int [https://docs.python.org/3/library/functions.html#int]) – index of the other strategy present in the population

	x (float [https://docs.python.org/3/library/functions.html#float]) – frequency of i type

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of strategies in the population

	payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – payoff matrix that defines the expected payoff of any give strategy against each other

	freq_array (Optional[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – optional vector to store the frequencies of each strategy in the population

	Returns

	The gradient of strategy i.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

egttools.analytical.utils.get_pairwise_gradient_from_replicator_n_player

	
get_pairwise_gradient_from_replicator_n_player(i, j, x, nb_strategies, group_size, payoffs, freq_array=None)

	Calculate the gradient for strategy/type i at the edges of the simplex (when there are
only two strategies in the population i and j).

	Parameters

	
	i (int [https://docs.python.org/3/library/functions.html#int]) – index of the strategy whose gradient we wish to calculate

	j (int [https://docs.python.org/3/library/functions.html#int]) – index of the other strategy present in the population

	x (float [https://docs.python.org/3/library/functions.html#float]) – frequency of i type

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of strategies in the population

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group

	payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – payoff matrix that defines the expected payoff of any give strategy against each other

	freq_array (Optional[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – optional vector to store the frequencies of each strategy in the population

	Returns

	The gradient of strategy i.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

egttools.analytical.utils.replicator_equation

	
replicator_equation(x, payoffs)

	Produces the discrete time derivative of the replicator dynamics

This only works for 2-player games.

	Parameters

	
	x (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,1]]) – array containing the frequency of each strategy in the population.

	payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]) – payoff matrix

	Returns

	time derivative of x

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.analytical.StochDynamics, egttools.numerical.PairwiseComparisonNumerical

egttools.analytical.utils.replicator_equation_n_player

	
replicator_equation_n_player(x, payoffs, group_size)

	Replicator dynamics in N-player games

The replicator equation is of the form

\[g(x) \equiv \dot{x_{i}} = x_{i}(f_{i}(x) - \sum_{j=1}^{N}{x_{j}f_{j}(x))\]

Which can also be represented using a pairwise comparison rule as:

\[\dot{x_{i}} = x_{i}\sum_{j}(f_{ij}(x) - f_{ji}(x))x_{j}\]

For N-player games, to calculate the fitness of a strategy given a population state, we
need to calculate the probability of each possible group configuration. This can be obtained
by summing for each possible group configuration the payoff of strategy i times the probability
of the group configurations occurring.

	Parameters

	
	x (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A vector of shape (1, nb_strategies), which contains the current frequency of each strategy in the population.

	payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Payoff matrix. Each row represents a strategy and each column a possible group configuration.
Each entry in the matrix should give the expected payoff for each row strategy for a given column group
configuration.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group.

	Returns

	A vector of shape (1, nb_strategies), which contains the change in frequency of each strategy in the population
(so the gradient).

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

egttools.analytical.utils.root

	
root(fun, x0, args=(), method='hybr', jac=None, tol=None, callback=None, options=None)

	Find a root of a vector function.

	Parameters

	
	fun (callable) – A vector function to find a root of.

	x0 (ndarray) – Initial guess.

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Extra arguments passed to the objective function and its Jacobian.

	method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Type of solver. Should be one of

	’hybr’ (see here)

	’lm’ (see here)

	’broyden1’ (see here)

	’broyden2’ (see here)

	’anderson’ (see here)

	’linearmixing’ (see here)

	’diagbroyden’ (see here)

	’excitingmixing’ (see here)

	’krylov’ (see here)

	’df-sane’ (see here)

	jac (bool [https://docs.python.org/3/library/functions.html#bool] or callable, optional) – If jac is a Boolean and is True, fun is assumed to return the
value of Jacobian along with the objective function. If False, the
Jacobian will be estimated numerically.
jac can also be a callable returning the Jacobian of fun. In
this case, it must accept the same arguments as fun.

	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – Tolerance for termination. For detailed control, use solver-specific
options.

	callback (function, optional) – Optional callback function. It is called on every iteration as
callback(x, f) where x is the current solution and f
the corresponding residual. For all methods but ‘hybr’ and ‘lm’.

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dictionary of solver options. E.g., xtol or maxiter, see
show_options() for details.

	Returns

	sol – The solution represented as a OptimizeResult object.
Important attributes are: x the solution array, success a
Boolean flag indicating if the algorithm exited successfully and
message which describes the cause of the termination. See
OptimizeResult for a description of other attributes.

	Return type

	OptimizeResult

See also

	show_options
	Additional options accepted by the solvers

Notes

This section describes the available solvers that can be selected by the
‘method’ parameter. The default method is hybr.

Method hybr uses a modification of the Powell hybrid method as
implemented in MINPACK 1.

Method lm solves the system of nonlinear equations in a least squares
sense using a modification of the Levenberg-Marquardt algorithm as
implemented in MINPACK 1.

Method df-sane is a derivative-free spectral method. 3

Methods broyden1, broyden2, anderson, linearmixing,
diagbroyden, excitingmixing, krylov are inexact Newton methods,
with backtracking or full line searches 2. Each method corresponds
to a particular Jacobian approximations.

	Method broyden1 uses Broyden’s first Jacobian approximation, it is
known as Broyden’s good method.

	Method broyden2 uses Broyden’s second Jacobian approximation, it
is known as Broyden’s bad method.

	Method anderson uses (extended) Anderson mixing.

	Method Krylov uses Krylov approximation for inverse Jacobian. It
is suitable for large-scale problem.

	Method diagbroyden uses diagonal Broyden Jacobian approximation.

	Method linearmixing uses a scalar Jacobian approximation.

	Method excitingmixing uses a tuned diagonal Jacobian
approximation.

Warning

The algorithms implemented for methods diagbroyden,
linearmixing and excitingmixing may be useful for specific
problems, but whether they will work may depend strongly on the
problem.

New in version 0.11.0.

References

	1(1,2)

	More, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom.
1980. User Guide for MINPACK-1.

	2

	C. T. Kelley. 1995. Iterative Methods for Linear and Nonlinear
Equations. Society for Industrial and Applied Mathematics.
<https://archive.siam.org/books/kelley/fr16/>

	3

	
	La Cruz, J.M. Martinez, M. Raydan. Math. Comp. 75, 1429 (2006).

Examples

The following functions define a system of nonlinear equations and its
jacobian.

>>> def fun(x):
... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0,
... 0.5 * (x[1] - x[0])**3 + x[1]]

>>> def jac(x):
... return np.array([[1 + 1.5 * (x[0] - x[1])**2,
... -1.5 * (x[0] - x[1])**2],
... [-1.5 * (x[1] - x[0])**2,
... 1 + 1.5 * (x[1] - x[0])**2]])

A solution can be obtained as follows.

>>> from scipy import optimize
>>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr')
>>> sol.x
array([0.8411639, 0.1588361])

Large problem

Suppose that we needed to solve the following integrodifferential
equation on the square \([0,1]\times[0,1]\):

\[\nabla^2 P = 10 \left(\int_0^1\int_0^1\cosh(P)\,dx\,dy\right)^2\]

with \(P(x,1) = 1\) and \(P=0\) elsewhere on the boundary of
the square.

The solution can be found using the method='krylov' solver:

>>> from scipy import optimize
>>> # parameters
>>> nx, ny = 75, 75
>>> hx, hy = 1./(nx-1), 1./(ny-1)

>>> P_left, P_right = 0, 0
>>> P_top, P_bottom = 1, 0

>>> def residual(P):
... d2x = np.zeros_like(P)
... d2y = np.zeros_like(P)
...
... d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx
... d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
... d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx
...
... d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
... d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy
... d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy
...
... return d2x + d2y - 10*np.cosh(P).mean()**2

>>> guess = np.zeros((nx, ny), float)
>>> sol = optimize.root(residual, guess, method='krylov')
>>> print('Residual: %g' % abs(residual(sol.x)).max())
Residual: 5.7972e-06 # may vary

>>> import matplotlib.pyplot as plt
>>> x, y = np.mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
>>> plt.pcolormesh(x, y, sol.x, shading='gouraud')
>>> plt.colorbar()
>>> plt.show()

egttools.analytical.utils.sample_unit_simplex

	
sample_unit_simplex(nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Samples uniformly at random the unit simplex with nb_strategies dimensionse.

	Parameters

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies.

	Returns

	Vector with the sampled state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.calculate_nb_states, egttools.numerical.sample_simplex

egttools.analytical.utils.StochDynamics

	
class StochDynamics(nb_strategies, payoffs, pop_size, group_size=2, mu=0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class containing methods to calculate the stochastic evolutionary dynamics of a population.

Defines a class that contains methods to compute the stationary distribution for
the limit of small mutation (only the monomorphic states) and the full transition matrix.

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies in the population

	payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]) – Payoff matrix indicating the payoff of each strategy (rows) against each other (columns).
When analyzing an N-player game (group_size > 2) the structure of the matrix is a bit more involved,
and we can have 2 options for structuring the payoff matrix:

1) If we consider a simplified version of the system with a reduced Markov Chain which only contains
the states at the edges of the simplex (the Small Mutation Limit - SML), then, we can assume that, at most,
there will be 2 strategies in a group at any given moment. In this case, StochDynamics expects
a square matrix of size nb_strategies x nb_strategies, in which each entry is a function that takes
2 positional arguments k and group_size, and an optional *args argument, and will return the expected payoff
of the row strategy A in a group with k A strategists and group_size - k
B strategists (the column strategy). For all the elements in the diagonal, only 1 strategy should be present
in the group, thus, this function should always return the same value, i.e., the payoff of a row strategy
when all individuals in the group adopt the same strategy. See below for an example.

2) If we want to consider the full Markov Chain composed of all possible states in the simplex, then
the payoff matrix should be of the shape nb_strategies x nb_group_configurations, where the number
of group configurations can be calculated using egttools.calculate_nb_states(group_size, nb_strategies).
Moreover, the mapping between group configurations and integer indexes must be done using
egttools.sample_simplex(index, group_size, nb_strategies). See below for an example

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – population size

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – group size

	mu (float [https://docs.python.org/3/library/functions.html#float]) – mutation probability

See also

egttools.numerical.PairwiseComparisonNumerical, egttools.analytical.replicator_equation, egttools.analytical.PairwiseComparison

Notes

We recommend that instead of`StochDynamics`, you use PairwiseComparison because the latter
is implemented in C++, runs faster and supports more precise types.

Examples

	Example of the payoff matrix for case 1) mu = 0:
	>>> def get_payoff_a_vs_b(k, group_size, *args):
... pre_computed_payoffs = [4, 5, 2, ..., 4] # the size of this list should be group_size + 1
... return pre_computed_payoffs[k]
>>> def get_payoff_b_vs_a(k, group_size, *args):
... pre_computed_payoffs = [0, 2, 1, ..., 0] # the size of this list should be group_size + 1
... return pre_computed_payoffs[k]
>>> def get_payoff_a_vs_a(k, group_size, *args):
... pre_computed_payoffs = [1, 1, 1, ..., 1] # the size of this list should be group_size + 1
... return pre_computed_payoffs[k]
>>> def get_payoff_b_vs_b(k, group_size, *args):
... pre_computed_payoffs = [0, 0, 0, ..., 0] # the size of this list should be group_size + 1
... return pre_computed_payoffs[k]
>>> payoff_matrix = np.array([
... [get_payoff_A_vs_A, get_payoff_A_vs_B],
... [get_payoff_B_vs_A, get_payoff_B_vs_B]
...])

	Example of payoff matrix for case 2) full markov chain (mu > 0):
	>>> import egttools
>>> nb_group_combinations = egttools.calculate_nb_states(group_size, nb_strategies)
>>> payoff_matrix = np.zeros(shape=(nb_strategies, nb_group_combinations))
>>> for group_configuration_index in range(nb_group_combinations):
... for strategy in range(nb_strategies):
... group_configuration = egttools.sample_simplex(group_configuration_index, group_size, nb_strategies)
... payoff_matrix[strategy, group_configuration_index] = get_payoff(strategy, group_configuration)

Methods

	calculate_full_transition_matrix

	Returns the full transition matrix in sparse representation.

	calculate_stationary_distribution

	Calculates the stationary distribution of the monomorphic states is mu = 0 (SML).

	fermi

	The fermi function determines the probability that the first type imitates the second.

	fitness_group

	In a population of x i-strategists and (pop_size-x) j strategists, where players interact in group of 'group_size' participants this function returns the average payoff of strategies i and j.

	fitness_pair

	Calculates the fitness of strategy i versus strategy j, in a population of x i-strategists and (pop_size-x) j strategists, considering a 2-player game.

	fixation_probability

	Function for calculating the fixation_probability probability of the invader in a population of residents.

	full_fitness_difference_group

	Calculate the fitness difference between strategies :param i and :param j assuming that player interacts in groups of size group_size > 2 (n-player games).

	full_fitness_difference_pairwise

	Calculates the fitness of strategy i in a population with state :param population_state, assuming pairwise interactions (2-player game).

	full_gradient_selection

	Calculates the gradient of selection for an invading strategy, given a population state.

	full_gradient_selection_without_mutation

	Calculates the gradient of selection for an invading strategy, given a population state.

	gradient_selection

	Calculates the gradient of selection given an invader and a resident strategy.

	prob_increase_decrease

	This function calculates for a given number of invaders the probability that the number increases or decreases with one.

	prob_increase_decrease_with_mutation

	This function calculates for a given number of invaders the probability that the number increases or decreases with taking into account a mutation rate.

	transition_and_fixation_matrix

	Calculates the transition matrix (only for the monomorphic states) and the fixation_probability probabilities.

	update_group_size

	Updates the groups size of the game (and the methods used to compute the fitness)

	update_payoffs

	Updates the payoff matrix

	update_population_size

	Updates the size of the population and the number of possible population states.

	
__init__(nb_strategies, payoffs, pop_size, group_size=2, mu=0)

	

	
calculate_full_transition_matrix(beta, *args)

	Returns the full transition matrix in sparse representation.

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – Other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	The full transition matrix between the two strategies in sparse format.

	Return type

	scipy.sparse.csr_matrix

	
calculate_stationary_distribution(beta, *args)

	Calculates the stationary distribution of the monomorphic states is mu = 0 (SML).
Otherwise, it calculates the stationary distribution including all possible population states.

This function is recommended only for Hermitian transition matrices.

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection.

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – extra arguments for calculating payoffs.

	Returns

	A vector containing the stationary distribution

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
static fermi(beta, fitness_diff)

	The fermi function determines the probability that the first type imitates the second.

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	fitness_diff (float [https://docs.python.org/3/library/functions.html#float]) – Difference in fitness between the strategies (f_a - f_b).

	Returns

	the probability of imitation

	Return type

	numpy.typing.ArrayLike

	
fitness_group(x, i, j, *args)

	In a population of x i-strategists and (pop_size-x) j strategists, where players
interact in group of ‘group_size’ participants this function
returns the average payoff of strategies i and j. This function expects
that

\[x \in [1,pop_size-1]\]

	Parameters

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – number of individuals adopting strategy i in the population

	i (int [https://docs.python.org/3/library/functions.html#int]) – index of strategy i

	j (int [https://docs.python.org/3/library/functions.html#int]) – index of strategy j

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – Other Parameters. This can be used to pass extra parameters to functions
stored in the payoff matrix

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	
	float

	Returns the difference in fitness between strategy i and j

	
fitness_pair(x, i, j, *args)

	Calculates the fitness of strategy i versus strategy j, in
a population of x i-strategists and (pop_size-x) j strategists, considering
a 2-player game.

	Parameters

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – number of i-strategists in the population

	i (int [https://docs.python.org/3/library/functions.html#int]) – index of strategy i

	j (int [https://docs.python.org/3/library/functions.html#int]) – index of strategy j

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) –

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	
	float

	the fitness difference among the strategies

	
fixation_probability(invader, resident, beta, *args)

	Function for calculating the fixation_probability probability of the invader
in a population of residents.

TODO: Requires more testing!

	Parameters

	
	invader (int [https://docs.python.org/3/library/functions.html#int]) – index of the invading strategy

	resident (int [https://docs.python.org/3/library/functions.html#int]) – index of the resident strategy

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – Other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	The fixation_probability probability.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

See also

egttools.numerical.PairwiseComparisonNumerical

	
full_fitness_difference_group(i, j, population_state)

	Calculate the fitness difference between strategies :param i and :param j
assuming that player interacts in groups of size group_size > 2 (n-player games).

	Parameters

	
	i (int [https://docs.python.org/3/library/functions.html#int]) – index of the strategy that will reproduce

	j (int [https://docs.python.org/3/library/functions.html#int]) – index of the strategy that will die

	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m,1]]) – vector containing the counts of each strategy in the population

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	
	float

	The fitness difference between strategies i and j

	
full_fitness_difference_pairwise(i, j, population_state)

	Calculates the fitness of strategy i in a population with state :param population_state,
assuming pairwise interactions (2-player game).

	Parameters

	
	i (int [https://docs.python.org/3/library/functions.html#int]) – index of the strategy that will reproduce

	j (int [https://docs.python.org/3/library/functions.html#int]) – index of the strategy that will die

	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m,1]]) – vector containing the counts of each strategy in the population

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	
	float

	The fitness difference between the two strategies for the given population state

	
full_gradient_selection(population_state, beta)

	Calculates the gradient of selection for an invading strategy, given a population state.

	Parameters

	
	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][np.int64[m,1]]) – structure of unsigned integers containing the
counts of each strategy in the population

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	Returns

	Matrix indicating the likelihood of change in the population given a starting point.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]

	
full_gradient_selection_without_mutation(population_state, beta)

	Calculates the gradient of selection for an invading strategy, given a population state. It does
not take into account mutation.

	Parameters

	
	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][np.int64[m,1]]) – structure of unsigned integers containing the
counts of each strategy in the population

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	Returns

	Matrix indicating the likelihood of change in the population given a starting point.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]

	
gradient_selection(k, invader, resident, beta, *args)

	Calculates the gradient of selection given an invader and a resident strategy.

	Parameters

	
	k (int [https://docs.python.org/3/library/functions.html#int]) – number of invaders in the population

	invader (int [https://docs.python.org/3/library/functions.html#int]) – index of the invading strategy

	resident (int [https://docs.python.org/3/library/functions.html#int]) – index of the resident strategy

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	args (Optional[List]) – other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	The gradient of selection.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
prob_increase_decrease(k, invader, resident, beta, *args)

	This function calculates for a given number of invaders the probability
that the number increases or decreases with one.

	Parameters

	
	k (int [https://docs.python.org/3/library/functions.html#int]) – number of invaders in the population

	invader (int [https://docs.python.org/3/library/functions.html#int]) – index of the invading strategy

	resident (int [https://docs.python.org/3/library/functions.html#int]) – index of the resident strategy

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	tuple(probability of increasing the number of invaders, probability of decreasing)

	Return type

	Tuple[numpy.typing.ArrayLike, numpy.typing.ArrayLike]

	
prob_increase_decrease_with_mutation(k, invader, resident, beta, *args)

	This function calculates for a given number of invaders the probability
that the number increases or decreases with taking into account a mutation rate.

	Parameters

	
	k (int [https://docs.python.org/3/library/functions.html#int]) – number of invaders in the population

	invader (int [https://docs.python.org/3/library/functions.html#int]) – index of the invading strategy

	resident (int [https://docs.python.org/3/library/functions.html#int]) – index of the resident strategy

	beta (float [https://docs.python.org/3/library/functions.html#float]) – intensity of selection

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	tuple(probability of increasing the number of invaders, probability of decreasing)

	Return type

	Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	
transition_and_fixation_matrix(beta, *args)

	Calculates the transition matrix (only for the monomorphic states)
and the fixation_probability probabilities.

This method calculates the transitions between monomorphic states. Thus, it assumes
that we are in the small mutation limit (SML) of the moran process. Only
use this method if this assumption is reasonable.

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	args (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – Other arguments. Can be used to pass extra arguments to functions contained
in the payoff matrix.

	Returns

	This method returns a tuple with the transition matrix as first element, and
the matrix of fixation probabilities.

	Return type

	Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]]

	
update_group_size(group_size)

	Updates the groups size of the game (and the methods used to compute the fitness)

	Parameters

	group_size (new group size) –

	
update_payoffs(payoffs, nb_strategies=None)

	Updates the payoff matrix

	Parameters

	
	payoffs (payoff matrix) –

	nb_strategies (total number of strategies (optional). If not indicated, then the new payoff) – matrix must have the same dimensions as the previous one

	
update_population_size(pop_size)

	Updates the size of the population and the number of possible population states.

	Parameters

	pop_size (New population size) –

egttools.behaviors

API reference documentation for behaviors submodule.

	egttools.behaviors.CPR

	

	egttools.behaviors.CRD

	API reference documentation for behaviors.CRD submodule.

	egttools.behaviors.NormalForm

	API reference documentation for behaviors.NormalForm submodule.

	egttools.behaviors.opinion_behaviors

	

	egttools.behaviors.pgg_behaviors

	The behaviors.pgg_behaviors submodule contains strategies which can be used with egttools.games.pgg game.

egttools.behaviors.CPR

	egttools.behaviors.CPR.abstract_cpr_strategy

	

	egttools.behaviors.CPR.cpr_strategies

	

egttools.behaviors.CPR.abstract_cpr_strategy

Functions

	abstractmethod

	A decorator indicating abstract methods.

Classes

	ABC

	Helper class that provides a standard way to create an ABC using inheritance.

	AbstractCPRStrategy

	

egttools.behaviors.CPR.abstract_cpr_strategy.abstractmethod

	
abstractmethod(funcobj)

	A decorator indicating abstract methods.

Requires that the metaclass is ABCMeta or derived from it. A
class that has a metaclass derived from ABCMeta cannot be
instantiated unless all of its abstract methods are overridden.
The abstract methods can be called using any of the normal
‘super’ call mechanisms. abstractmethod() may be used to declare
abstract methods for properties and descriptors.

Usage:

	class C(metaclass=ABCMeta):
	@abstractmethod
def my_abstract_method(self, …):

…

egttools.behaviors.CPR.abstract_cpr_strategy.ABC

	
class ABC

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Helper class that provides a standard way to create an ABC using
inheritance.

Methods

	
__abstractmethods__ = frozenset({})

	

	
__slots__ = ()

	

egttools.behaviors.CPR.abstract_cpr_strategy.AbstractCPRStrategy

	
class AbstractCPRStrategy

	Bases: ABC

Methods

	get_extraction

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	get_payoff

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	is_commitment_validated

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	proposes_commitment

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	type

	
	rtype

	str [https://docs.python.org/3/library/stdtypes.html#str]

	would_like_to_commit

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract get_extraction(a, b, group_size, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
abstract static get_payoff(a, b, extraction, group_extraction, fine=0, cost=0, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
abstract is_commitment_validated(nb_committers)

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract proposes_commitment()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract type()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract would_like_to_commit()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__abstractmethods__ = frozenset({'get_extraction', 'get_payoff', 'is_commitment_validated', 'proposes_commitment', 'type', 'would_like_to_commit'})

	

	
__annotations__ = {}

	

	
__slots__ = ()

	

egttools.behaviors.CPR.cpr_strategies

Functions

	fair_extraction

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	high_extraction

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	nash_extraction

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	payoff_no_commitment

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

Classes

	AbstractCPRStrategy

	

	CommitmentStrategy

	

	FairExtraction

	

	FakeStrategy

	

	FixedExtraction

	

	FreeStrategy

	

	HighExtraction

	

	NashExtraction

	

egttools.behaviors.CPR.cpr_strategies.fair_extraction

	
fair_extraction(a, b, group_size)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

egttools.behaviors.CPR.cpr_strategies.high_extraction

	
high_extraction(a, b, group_size)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

egttools.behaviors.CPR.cpr_strategies.nash_extraction

	
nash_extraction(a, b, group_size)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

egttools.behaviors.CPR.cpr_strategies.payoff_no_commitment

	
payoff_no_commitment(a, b, extraction, group_extraction)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

egttools.behaviors.CPR.cpr_strategies.AbstractCPRStrategy

	
class AbstractCPRStrategy

	Bases: ABC

Methods

	get_extraction

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	get_payoff

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	is_commitment_validated

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	proposes_commitment

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	type

	
	rtype

	str [https://docs.python.org/3/library/stdtypes.html#str]

	would_like_to_commit

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract get_extraction(a, b, group_size, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
abstract static get_payoff(a, b, extraction, group_extraction, fine=0, cost=0, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
abstract is_commitment_validated(nb_committers)

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract proposes_commitment()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract type()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract would_like_to_commit()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__abstractmethods__ = frozenset({'get_extraction', 'get_payoff', 'is_commitment_validated', 'proposes_commitment', 'type', 'would_like_to_commit'})

	

	
__annotations__ = {}

	

	
__slots__ = ()

	

egttools.behaviors.CPR.cpr_strategies.CommitmentStrategy

	
class CommitmentStrategy(commitment_threshold)

	Bases: AbstractCPRStrategy

Methods

	get_extraction

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	get_payoff

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	is_commitment_validated

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	proposes_commitment

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	type

	
	rtype

	str [https://docs.python.org/3/library/stdtypes.html#str]

	would_like_to_commit

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__init__(commitment_threshold)

	

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_extraction(a, b, group_size, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
static get_payoff(a, b, extraction, group_extraction, fine=0, cost=0, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
is_commitment_validated(nb_committers)

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
proposes_commitment()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
type()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
would_like_to_commit()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__abstractmethods__ = frozenset({})

	

	
__annotations__ = {}

	

	
__slots__ = ()

	

egttools.behaviors.CPR.cpr_strategies.FairExtraction

	
class FairExtraction

	Bases: AbstractCPRStrategy

Methods

	get_extraction

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	get_payoff

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	is_commitment_validated

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	proposes_commitment

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	type

	
	rtype

	str [https://docs.python.org/3/library/stdtypes.html#str]

	would_like_to_commit

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_extraction(a, b, group_size, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
static get_payoff(a, b, extraction, group_extraction, fine=0, cost=0, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
is_commitment_validated(nb_committers)

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
proposes_commitment()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
type()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
would_like_to_commit()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__abstractmethods__ = frozenset({})

	

	
__annotations__ = {}

	

	
__slots__ = ()

	

egttools.behaviors.CPR.cpr_strategies.FakeStrategy

	
class FakeStrategy

	Bases: AbstractCPRStrategy

Methods

	get_extraction

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	get_payoff

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	is_commitment_validated

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	proposes_commitment

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	type

	
	rtype

	str [https://docs.python.org/3/library/stdtypes.html#str]

	would_like_to_commit

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_extraction(a, b, group_size, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
static get_payoff(a, b, extraction, group_extraction, fine=0, cost=0, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
is_commitment_validated(nb_committers)

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
proposes_commitment()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
type()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
would_like_to_commit()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__abstractmethods__ = frozenset({})

	

	
__annotations__ = {}

	

	
__slots__ = ()

	

egttools.behaviors.CPR.cpr_strategies.FixedExtraction

	
class FixedExtraction(extraction, accepts_commitment)

	Bases: AbstractCPRStrategy

Methods

	get_extraction

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	get_payoff

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	is_commitment_validated

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	proposes_commitment

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	type

	
	rtype

	str [https://docs.python.org/3/library/stdtypes.html#str]

	would_like_to_commit

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__init__(extraction, accepts_commitment)

	

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_extraction(a, b, group_size, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
static get_payoff(a, b, extraction, group_extraction, fine=0, cost=0, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
is_commitment_validated(nb_committers)

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
proposes_commitment()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
type()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
would_like_to_commit()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__abstractmethods__ = frozenset({})

	

	
__annotations__ = {}

	

	
__slots__ = ()

	

egttools.behaviors.CPR.cpr_strategies.FreeStrategy

	
class FreeStrategy

	Bases: AbstractCPRStrategy

Methods

	get_extraction

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	get_payoff

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	is_commitment_validated

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	proposes_commitment

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	type

	
	rtype

	str [https://docs.python.org/3/library/stdtypes.html#str]

	would_like_to_commit

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_extraction(a, b, group_size, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
static get_payoff(a, b, extraction, group_extraction, fine=0, cost=0, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
is_commitment_validated(nb_committers)

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
proposes_commitment()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
type()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
would_like_to_commit()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__abstractmethods__ = frozenset({})

	

	
__annotations__ = {}

	

	
__slots__ = ()

	

egttools.behaviors.CPR.cpr_strategies.HighExtraction

	
class HighExtraction

	Bases: AbstractCPRStrategy

Methods

	get_extraction

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	get_payoff

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	is_commitment_validated

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	proposes_commitment

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	type

	
	rtype

	str [https://docs.python.org/3/library/stdtypes.html#str]

	would_like_to_commit

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_extraction(a, b, group_size, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
static get_payoff(a, b, extraction, group_extraction, fine=0, cost=0, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
is_commitment_validated(nb_committers)

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
proposes_commitment()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
type()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
would_like_to_commit()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__abstractmethods__ = frozenset({})

	

	
__annotations__ = {}

	

	
__slots__ = ()

	

egttools.behaviors.CPR.cpr_strategies.NashExtraction

	
class NashExtraction

	Bases: AbstractCPRStrategy

Methods

	get_extraction

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	get_payoff

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	is_commitment_validated

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	proposes_commitment

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	type

	
	rtype

	str [https://docs.python.org/3/library/stdtypes.html#str]

	would_like_to_commit

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_extraction(a, b, group_size, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
static get_payoff(a, b, extraction, group_extraction, fine=0, cost=0, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
is_commitment_validated(nb_committers)

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
proposes_commitment()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
type()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
would_like_to_commit()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__abstractmethods__ = frozenset({})

	

	
__annotations__ = {}

	

	
__slots__ = ()

	

egttools.behaviors.CRD

API reference documentation for behaviors.CRD submodule.

Classes

	AbstractCRDStrategy

	

	CRDMemoryOnePlayer

	This strategy contributes in function of the contributions of the rest of the group in the previous round.

	GoalBasedCRDStrategy

	A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

	MovingAverageCRDStrategy

	A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

	TimeBasedCRDStrategy

	A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

	egttools.behaviors.CRD.goal_based

	

	egttools.behaviors.CRD.moving_average

	

	egttools.behaviors.CRD.time_based

	

egttools.behaviors.CRD.AbstractCRDStrategy

	
class AbstractCRDStrategy(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy)

	Bases: pybind11_object

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy) → None [https://docs.python.org/3/library/constants.html#None]

	

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy, time_step: int [https://docs.python.org/3/library/functions.html#int], group_contributions_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	group_contributions_prev (int [https://docs.python.org/3/library/functions.html#int]) – Sum of contributions of the other members of the group (excluding the focal player) in the previous round.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.CRD.CRDMemoryOnePlayer, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
type(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.CRD.CRDMemoryOnePlayer

	
class CRDMemoryOnePlayer(self: egttools.numerical.numerical.behaviors.CRD.CRDMemoryOnePlayer, personal_threshold: int [https://docs.python.org/3/library/functions.html#int], initial_action: int [https://docs.python.org/3/library/functions.html#int], action_above: int [https://docs.python.org/3/library/functions.html#int], action_equal: int [https://docs.python.org/3/library/functions.html#int], action_below: int [https://docs.python.org/3/library/functions.html#int])

	Bases: AbstractCRDStrategy

This strategy contributes in function of the contributions of the rest of the group in the previous round.

This strategy contributes @param initial_action in the first round of the game,
afterwards compares the sum of contributions of the other members of the group
in the previous round (a_{-i}(t-1)) to a :param personal_threshold. If the
a_{-i}(t-1)) > personal_threshold the agent contributions :param action_above,
if a_{-i}(t-1)) = personal_threshold it contributes :param action_equal
or if a_{-i}(t-1)) < personal_threshold it contributes :param action_below.

	Parameters

	
	personal_threshold (int [https://docs.python.org/3/library/functions.html#int]) – threshold value compared to the contributions of the other members of the group

	initial_action (int [https://docs.python.org/3/library/functions.html#int]) – Contribution in the first round

	action_above (int [https://docs.python.org/3/library/functions.html#int]) – contribution if a_{-i}(t-1)) > personal_threshold

	action_equal (int [https://docs.python.org/3/library/functions.html#int]) – contribution if a_{-i}(t-1)) = personal_threshold

	action_below (int [https://docs.python.org/3/library/functions.html#int]) – contribution if a_{-i}(t-1)) < personal_threshold

See also

egttools.behaviors.CRD.AbstractCRDStrategy, egttools.games.AbstractGame, egttools.games.CRDGame, egttools.games.CRDGameTU

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.CRD.CRDMemoryOnePlayer, personal_threshold: int [https://docs.python.org/3/library/functions.html#int], initial_action: int [https://docs.python.org/3/library/functions.html#int], action_above: int [https://docs.python.org/3/library/functions.html#int], action_equal: int [https://docs.python.org/3/library/functions.html#int], action_below: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	This strategy contributes in function of the contributions of the rest of the group in the previous round.

This strategy contributes @param initial_action in the first round of the game,
afterwards compares the sum of contributions of the other members of the group
in the previous round (a_{-i}(t-1)) to a :param personal_threshold. If the
a_{-i}(t-1)) > personal_threshold the agent contributions :param action_above,
if a_{-i}(t-1)) = personal_threshold it contributes :param action_equal
or if a_{-i}(t-1)) < personal_threshold it contributes :param action_below.

	Parameters

	
	personal_threshold (int [https://docs.python.org/3/library/functions.html#int]) – threshold value compared to the contributions of the other members of the group

	initial_action (int [https://docs.python.org/3/library/functions.html#int]) – Contribution in the first round

	action_above (int [https://docs.python.org/3/library/functions.html#int]) – contribution if a_{-i}(t-1)) > personal_threshold

	action_equal (int [https://docs.python.org/3/library/functions.html#int]) – contribution if a_{-i}(t-1)) = personal_threshold

	action_below (int [https://docs.python.org/3/library/functions.html#int]) – contribution if a_{-i}(t-1)) < personal_threshold

See also

egttools.behaviors.CRD.AbstractCRDStrategy, egttools.games.AbstractGame, egttools.games.CRDGame, egttools.games.CRDGameTU

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.behaviors.CRD.CRDMemoryOnePlayer) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
get_action(self: egttools.numerical.numerical.behaviors.CRD.CRDMemoryOnePlayer, time_step: int [https://docs.python.org/3/library/functions.html#int], group_contributions_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	group_contributions_prev (int [https://docs.python.org/3/library/functions.html#int]) – Sum of contributions of the other members of the group (without
the focal player) in the previous round.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.CRD.AbstractCRDStrategy, egttools.games.AbstractGame, egttools.games.CRDGame, egttools.games.CRDGameTU, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.GRIM

	
type(self: egttools.numerical.numerical.behaviors.CRD.CRDMemoryOnePlayer) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.CRD.GoalBasedCRDStrategy

	
class GoalBasedCRDStrategy(a0, s1r0, s1r1, s1r2, s1r3, s1r4, s2r0, s2r1, s2r2, s2r3, s2r4, switch, group_size)

	Bases: AbstractCRDStrategy

A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

	Parameters

	
	a0 (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute in the initial round.

	aa (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed above the average of the group in the previous round.

	am (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed equal to the average of the group in the previous round.

	ab (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed below the average of the group in the previous round.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	type

	Returns a string indicating the Strategy Type.

	
__init__(a0, s1r0, s1r1, s1r2, s1r3, s1r4, s2r0, s2r1, s2r2, s2r3, s2r4, switch, group_size)

	A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

	Parameters

	
	a0 (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute in the initial round.

	aa (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed above the average of the group in the previous round.

	am (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed equal to the average of the group in the previous round.

	ab (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed below the average of the group in the previous round.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group.

	
__new__(**kwargs)

	

	
__str__()

	Return str(self).

	
get_action(time_step, group_contributions_prev)

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	group_contributions_prev (int [https://docs.python.org/3/library/functions.html#int]) – Sum of contributions of the other members of the group (excluding the focal player) in the previous round.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.CRD.CRDMemoryOnePlayer, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
type(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.CRD.MovingAverageCRDStrategy

	
class MovingAverageCRDStrategy(a0, aa, am, ab, group_size)

	Bases: AbstractCRDStrategy

A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

	Parameters

	
	a0 (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute in the initial round.

	aa (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed above the average of the group in the previous round.

	am (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed equal to the average of the group in the previous round.

	ab (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed below the average of the group in the previous round.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	type

	Returns a string indicating the Strategy Type.

	
__init__(a0, aa, am, ab, group_size)

	A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

	Parameters

	
	a0 (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute in the initial round.

	aa (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed above the average of the group in the previous round.

	am (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed equal to the average of the group in the previous round.

	ab (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed below the average of the group in the previous round.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group.

	
__new__(**kwargs)

	

	
__str__()

	Return str(self).

	
get_action(time_step, group_contributions_prev)

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	group_contributions_prev (int [https://docs.python.org/3/library/functions.html#int]) – Sum of contributions of the other members of the group (excluding the focal player) in the previous round.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.CRD.CRDMemoryOnePlayer, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
type(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.CRD.TimeBasedCRDStrategy

	
class TimeBasedCRDStrategy(actions_per_round)

	Bases: AbstractCRDStrategy

A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

	Parameters

	actions_per_round (List[int [https://docs.python.org/3/library/functions.html#int]]) – Defines the action which this strategy will play in every round. If you change the number of rounds
of the game, you should redefine this list, otherwise there will be an exception!!

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	type

	Returns a string indicating the Strategy Type.

	
__init__(actions_per_round)

	A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

	Parameters

	actions_per_round (List[int [https://docs.python.org/3/library/functions.html#int]]) – Defines the action which this strategy will play in every round. If you change the number of rounds
of the game, you should redefine this list, otherwise there will be an exception!!

	
__new__(**kwargs)

	

	
__str__()

	Return str(self).

	
get_action(time_step, group_contributions_prev)

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	group_contributions_prev (int [https://docs.python.org/3/library/functions.html#int]) – Sum of contributions of the other members of the group (excluding the focal player) in the previous round.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.CRD.CRDMemoryOnePlayer, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
type(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.CRD.goal_based

Classes

	AbstractCRDStrategy

	

	GoalBasedCRDStrategy

	A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

egttools.behaviors.CRD.goal_based.AbstractCRDStrategy

	
class AbstractCRDStrategy(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy)

	Bases: pybind11_object

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy) → None [https://docs.python.org/3/library/constants.html#None]

	

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy, time_step: int [https://docs.python.org/3/library/functions.html#int], group_contributions_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	group_contributions_prev (int [https://docs.python.org/3/library/functions.html#int]) – Sum of contributions of the other members of the group (excluding the focal player) in the previous round.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.CRD.CRDMemoryOnePlayer, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
type(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.CRD.goal_based.GoalBasedCRDStrategy

	
class GoalBasedCRDStrategy(a0, s1r0, s1r1, s1r2, s1r3, s1r4, s2r0, s2r1, s2r2, s2r3, s2r4, switch, group_size)

	Bases: AbstractCRDStrategy

A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

	Parameters

	
	a0 (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute in the initial round.

	aa (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed above the average of the group in the previous round.

	am (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed equal to the average of the group in the previous round.

	ab (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed below the average of the group in the previous round.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	type

	Returns a string indicating the Strategy Type.

	
__init__(a0, s1r0, s1r1, s1r2, s1r3, s1r4, s2r0, s2r1, s2r2, s2r3, s2r4, switch, group_size)

	A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

	Parameters

	
	a0 (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute in the initial round.

	aa (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed above the average of the group in the previous round.

	am (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed equal to the average of the group in the previous round.

	ab (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed below the average of the group in the previous round.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group.

	
__new__(**kwargs)

	

	
__str__()

	Return str(self).

	
get_action(time_step, group_contributions_prev)

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	group_contributions_prev (int [https://docs.python.org/3/library/functions.html#int]) – Sum of contributions of the other members of the group (excluding the focal player) in the previous round.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.CRD.CRDMemoryOnePlayer, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
type(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.CRD.moving_average

Classes

	AbstractCRDStrategy

	

	MovingAverageCRDStrategy

	A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

egttools.behaviors.CRD.moving_average.AbstractCRDStrategy

	
class AbstractCRDStrategy(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy)

	Bases: pybind11_object

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy) → None [https://docs.python.org/3/library/constants.html#None]

	

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy, time_step: int [https://docs.python.org/3/library/functions.html#int], group_contributions_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	group_contributions_prev (int [https://docs.python.org/3/library/functions.html#int]) – Sum of contributions of the other members of the group (excluding the focal player) in the previous round.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.CRD.CRDMemoryOnePlayer, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
type(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.CRD.moving_average.MovingAverageCRDStrategy

	
class MovingAverageCRDStrategy(a0, aa, am, ab, group_size)

	Bases: AbstractCRDStrategy

A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

	Parameters

	
	a0 (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute in the initial round.

	aa (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed above the average of the group in the previous round.

	am (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed equal to the average of the group in the previous round.

	ab (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed below the average of the group in the previous round.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	type

	Returns a string indicating the Strategy Type.

	
__init__(a0, aa, am, ab, group_size)

	A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

	Parameters

	
	a0 (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute in the initial round.

	aa (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed above the average of the group in the previous round.

	am (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed equal to the average of the group in the previous round.

	ab (int [https://docs.python.org/3/library/functions.html#int]) – how much to contribute when you have contributed below the average of the group in the previous round.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group.

	
__new__(**kwargs)

	

	
__str__()

	Return str(self).

	
get_action(time_step, group_contributions_prev)

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	group_contributions_prev (int [https://docs.python.org/3/library/functions.html#int]) – Sum of contributions of the other members of the group (excluding the focal player) in the previous round.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.CRD.CRDMemoryOnePlayer, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
type(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.CRD.time_based

Classes

	AbstractCRDStrategy

	

	TimeBasedCRDStrategy

	A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

egttools.behaviors.CRD.time_based.AbstractCRDStrategy

	
class AbstractCRDStrategy(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy)

	Bases: pybind11_object

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy) → None [https://docs.python.org/3/library/constants.html#None]

	

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy, time_step: int [https://docs.python.org/3/library/functions.html#int], group_contributions_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	group_contributions_prev (int [https://docs.python.org/3/library/functions.html#int]) – Sum of contributions of the other members of the group (excluding the focal player) in the previous round.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.CRD.CRDMemoryOnePlayer, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
type(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.CRD.time_based.TimeBasedCRDStrategy

	
class TimeBasedCRDStrategy(actions_per_round)

	Bases: AbstractCRDStrategy

A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

	Parameters

	actions_per_round (List[int [https://docs.python.org/3/library/functions.html#int]]) – Defines the action which this strategy will play in every round. If you change the number of rounds
of the game, you should redefine this list, otherwise there will be an exception!!

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	type

	Returns a string indicating the Strategy Type.

	
__init__(actions_per_round)

	A CRD strategy which adapts in function of a moving average of the contributions of the rest of the group.

	Parameters

	actions_per_round (List[int [https://docs.python.org/3/library/functions.html#int]]) – Defines the action which this strategy will play in every round. If you change the number of rounds
of the game, you should redefine this list, otherwise there will be an exception!!

	
__new__(**kwargs)

	

	
__str__()

	Return str(self).

	
get_action(time_step, group_contributions_prev)

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	group_contributions_prev (int [https://docs.python.org/3/library/functions.html#int]) – Sum of contributions of the other members of the group (excluding the focal player) in the previous round.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.CRD.CRDMemoryOnePlayer, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
type(self: egttools.numerical.numerical.behaviors.CRD.AbstractCRDStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm

API reference documentation for behaviors.NormalForm submodule.

Classes

	AbstractNFGStrategy

	

	egttools.behaviors.NormalForm.TwoActions

	API reference documentation for behaviors.NormalForm.TwoActions submodule.

egttools.behaviors.NormalForm.AbstractNFGStrategy

	
class AbstractNFGStrategy(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy)

	Bases: pybind11_object

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Property indicating if the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → None [https://docs.python.org/3/library/constants.html#None]

	

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy, time_step: int [https://docs.python.org/3/library/functions.html#int], action_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → bool [https://docs.python.org/3/library/functions.html#bool]

	Property indicating if the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions

API reference documentation for behaviors.NormalForm.TwoActions submodule.

Classes

	ActionInertia

	Always repeats the same action, but explores a different action with probability :param epsilon.

	Cooperator

	This strategy always cooperates.

	Defector

	This strategy always defects.

	Detective

	A Detective player who tries to analyze the opponent.

	EpsilonGRIM

	A GRIM player with randomized first action and probability of making mistakes.

	EpsilonTFT

	A TFT player with randomized first action and probability of making mistakes.

	GRIM

	Grim (Trigger): Cooperates until its opponent has defected once, and then defects for the rest of the game.

	GenerousTFT

	Cooperates on the first round and after its opponent cooperates.

	GradualTFT

	TFT with two differences: (1) it increases the string of punishing defection responses with each additional defection by its opponent (2) it apologizes for each string of defectionsby cooperating in the subsequent two rounds.

	ImperfectTFT

	Imitates opponent as in TFT, but makes mistakes with :param error_probability.

	MemoryOneStrategy

	Defines a Memory One strategy.

	Pavlov

	Win-stay loose-shift: Cooperates if it and its opponent moved alike inprevious move and defects if they moved differently.

	Random

	This players chooses cooperation with uniform random probability.

	SuspiciousTFT

	Defects on the first round and imitates its opponent's previous move thereafter.

	TFT

	Tit for Tat: Cooperates in the first round and imitates the opponent's move thereafter.

	TFTT

	Tit for 2 tats: Defects if defected twice.

	TTFT

	2 Tits for tat: Defects twice if defected.

	egttools.behaviors.NormalForm.TwoActions.nfg_strategies

	

egttools.behaviors.NormalForm.TwoActions.ActionInertia

	
class ActionInertia(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.ActionInertia, epsilon: float [https://docs.python.org/3/library/functions.html#float], p: float [https://docs.python.org/3/library/functions.html#float])

	Bases: AbstractNFGStrategy

Always repeats the same action, but explores a different action with probability :param epsilon.

In the first round it will cooperate with probability :param p.

	Parameters

	
	epsilon (double) – Probability of changing action.

	p (double) – Probability of cooperation in the first round

See also

egttools.games.AbstractGame, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.GRIM

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Indicates whether the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.ActionInertia, epsilon: float [https://docs.python.org/3/library/functions.html#float], p: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	Always repeats the same action, but explores a different action with probability :param epsilon.

In the first round it will cooperate with probability :param p.

	Parameters

	
	epsilon (double) – Probability of changing action.

	p (double) – Probability of cooperation in the first round

See also

egttools.games.AbstractGame, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.GRIM

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.ActionInertia, time_step: int [https://docs.python.org/3/library/functions.html#int], action_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.games.AbstractGame, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.GRIM

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.ActionInertia) → bool [https://docs.python.org/3/library/functions.html#bool]

	Indicates whether the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.ActionInertia) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.Cooperator

	
class Cooperator(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Cooperator)

	Bases: AbstractNFGStrategy

This strategy always cooperates.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Indicates whether the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Cooperator) → None [https://docs.python.org/3/library/constants.html#None]

	This strategy always cooperates.

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Cooperator, time_step: int [https://docs.python.org/3/library/functions.html#int], action_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.games.AbstractGame, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Cooperator) → bool [https://docs.python.org/3/library/functions.html#bool]

	Indicates whether the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Cooperator) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.Defector

	
class Defector(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Defector)

	Bases: AbstractNFGStrategy

This strategy always defects.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Indicates whether the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Defector) → None [https://docs.python.org/3/library/constants.html#None]

	This strategy always defects.

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Defector, time_step: int [https://docs.python.org/3/library/functions.html#int], action_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.games.AbstractGame, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Defector) → bool [https://docs.python.org/3/library/functions.html#bool]

	Indicates whether the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Defector) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.Detective

	
class Detective

	Bases: AbstractNFGStrategy

A Detective player who tries to analyze the opponent.

This player will always play the same initial sequence of
Cooperate, Defect, Cooperate, Cooperate. If the opponent defects
during this initial sequence, then Defective will play TFT from the 5th
round on. Otherwise, Detective will play always Defect.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Property indicating if the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__()

	A Detective player who tries to analyze the opponent.

This player will always play the same initial sequence of
Cooperate, Defect, Cooperate, Cooperate. If the opponent defects
during this initial sequence, then Defective will play TFT from the 5th
round on. Otherwise, Detective will play always Defect.

	
__new__(**kwargs)

	

	
__str__()

	Return str(self).

	
get_action(time_step, action_prev)

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → bool [https://docs.python.org/3/library/functions.html#bool]

	Property indicating if the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.EpsilonGRIM

	
class EpsilonGRIM(p, epsilon)

	Bases: AbstractNFGStrategy

A GRIM player with randomized first action and probability
of making mistakes.

This player acts exactly as GRIM (cooperates until the opponent defects),
however in the first round it will cooperate with probability :param p
and in the subsequent rounds it has a probability
:param epsilon of making a mistake and changing its action.

	Parameters

	
	p (float [https://docs.python.org/3/library/functions.html#float]) – Probability of cooperating in the first round

	epsilon (float [https://docs.python.org/3/library/functions.html#float]) – Probability of making a mistake in any round after round 1.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Property indicating if the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(p, epsilon)

	A GRIM player with randomized first action and probability
of making mistakes.

This player acts exactly as GRIM (cooperates until the opponent defects),
however in the first round it will cooperate with probability :param p
and in the subsequent rounds it has a probability
:param epsilon of making a mistake and changing its action.

	Parameters

	
	p (float [https://docs.python.org/3/library/functions.html#float]) – Probability of cooperating in the first round

	epsilon (float [https://docs.python.org/3/library/functions.html#float]) – Probability of making a mistake in any round after round 1.

	
__new__(**kwargs)

	

	
__str__()

	Return str(self).

	
get_action(time_step, action_prev)

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → bool [https://docs.python.org/3/library/functions.html#bool]

	Property indicating if the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.EpsilonTFT

	
class EpsilonTFT(p, epsilon)

	Bases: AbstractNFGStrategy

A TFT player with randomized first action and probability
of making mistakes.

This player acts exactly as Tit-for-Tat (repeats
the last action of the opponent), however in the
first round it will cooperate with probability :param p
and in the subsequent rounds it has a probability
:param epsilon of making a mistake and changing its action.

	Parameters

	
	p (float [https://docs.python.org/3/library/functions.html#float]) – Probability of cooperating in the first round

	epsilon (float [https://docs.python.org/3/library/functions.html#float]) – Probability of making a mistake in any round after round 1.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Property indicating if the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(p, epsilon)

	A TFT player with randomized first action and probability
of making mistakes.

This player acts exactly as Tit-for-Tat (repeats
the last action of the opponent), however in the
first round it will cooperate with probability :param p
and in the subsequent rounds it has a probability
:param epsilon of making a mistake and changing its action.

	Parameters

	
	p (float [https://docs.python.org/3/library/functions.html#float]) – Probability of cooperating in the first round

	epsilon (float [https://docs.python.org/3/library/functions.html#float]) – Probability of making a mistake in any round after round 1.

	
__new__(**kwargs)

	

	
__str__()

	Return str(self).

	
get_action(time_step, action_prev)

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → bool [https://docs.python.org/3/library/functions.html#bool]

	Property indicating if the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.GRIM

	
class GRIM(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.GRIM)

	Bases: AbstractNFGStrategy

Grim (Trigger): Cooperates until its opponent has defected once, and then defects for the rest of the game.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Indicates whether the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.GRIM) → None [https://docs.python.org/3/library/constants.html#None]

	Grim (Trigger): Cooperates until its opponent has defected once, and then defects for the rest of the game.

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.GRIM, time_step: int [https://docs.python.org/3/library/functions.html#int], action_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.games.AbstractGame, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.GRIM) → bool [https://docs.python.org/3/library/functions.html#bool]

	Indicates whether the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.GRIM) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.GenerousTFT

	
class GenerousTFT(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.GenerousTFT, R: float [https://docs.python.org/3/library/functions.html#float], P: float [https://docs.python.org/3/library/functions.html#float], T: float [https://docs.python.org/3/library/functions.html#float], S: float [https://docs.python.org/3/library/functions.html#float])

	Bases: AbstractNFGStrategy

Cooperates on the first round and after its opponent cooperates. Following a defection,it cooperates with probability
@f[p(R,P,T,S) = min{1 - frac{T-R}{R-S}, frac{R-P}{T-P}} @f]
where R, P, T and S are the reward, punishment, temptation and suckers payoffs.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Indicates whether the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.GenerousTFT, R: float [https://docs.python.org/3/library/functions.html#float], P: float [https://docs.python.org/3/library/functions.html#float], T: float [https://docs.python.org/3/library/functions.html#float], S: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	Cooperates on the first round and after its opponent cooperates. Following a defection,it cooperates with probability
@f[p(R,P,T,S) = min{1 - frac{T-R}{R-S}, frac{R-P}{T-P}} @f]
where R, P, T and S are the reward, punishment, temptation and suckers payoffs.

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.GenerousTFT, time_step: int [https://docs.python.org/3/library/functions.html#int], action_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.games.AbstractGame, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.GenerousTFT) → bool [https://docs.python.org/3/library/functions.html#bool]

	Indicates whether the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.GenerousTFT) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.GradualTFT

	
class GradualTFT(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.GradualTFT)

	Bases: AbstractNFGStrategy

TFT with two differences:
(1) it increases the string of punishing defection responses with each additional defection by its opponent
(2) it apologizes for each string of defectionsby cooperating in the subsequent two rounds.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Indicates whether the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.GradualTFT) → None [https://docs.python.org/3/library/constants.html#None]

	TFT with two differences:
(1) it increases the string of punishing defection responses with each additional defection by its opponent
(2) it apologizes for each string of defectionsby cooperating in the subsequent two rounds.

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.GradualTFT, time_step: int [https://docs.python.org/3/library/functions.html#int], action_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.games.AbstractGame, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.GradualTFT) → bool [https://docs.python.org/3/library/functions.html#bool]

	Indicates whether the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.GradualTFT) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.ImperfectTFT

	
class ImperfectTFT(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.ImperfectTFT, error_probability: float [https://docs.python.org/3/library/functions.html#float])

	Bases: AbstractNFGStrategy

Imitates opponent as in TFT, but makes mistakes with :param error_probability.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Indicates whether the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.ImperfectTFT, error_probability: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	Imitates opponent as in TFT, but makes mistakes with :param error_probability.

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.ImperfectTFT, time_step: int [https://docs.python.org/3/library/functions.html#int], action_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.games.AbstractGame, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.ImperfectTFT) → bool [https://docs.python.org/3/library/functions.html#bool]

	Indicates whether the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.ImperfectTFT) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.MemoryOneStrategy

	
class MemoryOneStrategy(action_first_round, strategy, is_stochastic)

	Bases: AbstractNFGStrategy

Defines a Memory One strategy.

	Parameters

	
	action_first_round (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) – Indicates the action this strategy will play in the first round. In the case that is_stochastic
is True, then this value should be a probability of Cooperation

	strategy (Union[Dict[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]], Dict[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], float [https://docs.python.org/3/library/functions.html#float]]]) – A dictionary with tuples defining the action/probability of cooperation for
each pair of previous actions of self and the opponent, e.g., CC, DC….

	is_stochastic (bool [https://docs.python.org/3/library/functions.html#bool]) – Indicates whether the strategy is stochastic or not. If it is stochastic, then the values both
for the action_first_round and the strategy should be probabilities of Cooperation. If it is
False, then 1 - indicates Cooperation and 0 - indicates Defection.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Property indicating if the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(action_first_round, strategy, is_stochastic)

	Defines a Memory One strategy.

	Parameters

	
	action_first_round (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) – Indicates the action this strategy will play in the first round. In the case that is_stochastic
is True, then this value should be a probability of Cooperation

	strategy (Union[Dict[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]], Dict[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], float [https://docs.python.org/3/library/functions.html#float]]]) – A dictionary with tuples defining the action/probability of cooperation for
each pair of previous actions of self and the opponent, e.g., CC, DC….

	is_stochastic (bool [https://docs.python.org/3/library/functions.html#bool]) – Indicates whether the strategy is stochastic or not. If it is stochastic, then the values both
for the action_first_round and the strategy should be probabilities of Cooperation. If it is
False, then 1 - indicates Cooperation and 0 - indicates Defection.

	
__new__(**kwargs)

	

	
__str__()

	Return str(self).

	
get_action(time_step, action_prev)

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → bool [https://docs.python.org/3/library/functions.html#bool]

	Property indicating if the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.Pavlov

	
class Pavlov(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Pavlov)

	Bases: AbstractNFGStrategy

Win-stay loose-shift: Cooperates if it and its opponent moved alike inprevious move and defects if they moved differently.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Indicates whether the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Pavlov) → None [https://docs.python.org/3/library/constants.html#None]

	Win-stay loose-shift: Cooperates if it and its opponent moved alike inprevious move and defects if they moved differently.

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Pavlov, time_step: int [https://docs.python.org/3/library/functions.html#int], action_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.games.AbstractGame, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.GRIM

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Pavlov) → bool [https://docs.python.org/3/library/functions.html#bool]

	Indicates whether the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Pavlov) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.Random

	
class Random(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Random)

	Bases: AbstractNFGStrategy

This players chooses cooperation with uniform random probability.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Indicates whether the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Random) → None [https://docs.python.org/3/library/constants.html#None]

	This players chooses cooperation with uniform random probability.

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Random, time_step: int [https://docs.python.org/3/library/functions.html#int], action_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.games.AbstractGame, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Random) → bool [https://docs.python.org/3/library/functions.html#bool]

	Indicates whether the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.Random) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT

	
class SuspiciousTFT(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.SuspiciousTFT)

	Bases: AbstractNFGStrategy

Defects on the first round and imitates its opponent’s previous move thereafter.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Indicates whether the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.SuspiciousTFT) → None [https://docs.python.org/3/library/constants.html#None]

	Defects on the first round and imitates its opponent’s previous move thereafter.

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.SuspiciousTFT, time_step: int [https://docs.python.org/3/library/functions.html#int], action_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.games.AbstractGame, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.SuspiciousTFT) → bool [https://docs.python.org/3/library/functions.html#bool]

	Indicates whether the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.SuspiciousTFT) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.TFT

	
class TFT(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.TFT)

	Bases: AbstractNFGStrategy

Tit for Tat: Cooperates in the first round and imitates the opponent’s move thereafter.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Indicates whether the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.TFT) → None [https://docs.python.org/3/library/constants.html#None]

	Tit for Tat: Cooperates in the first round and imitates the opponent’s move thereafter.

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.TFT, time_step: int [https://docs.python.org/3/library/functions.html#int], action_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.games.AbstractGame, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.TFT) → bool [https://docs.python.org/3/library/functions.html#bool]

	Indicates whether the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.TFT) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.TFTT

	
class TFTT(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.TFTT)

	Bases: AbstractNFGStrategy

Tit for 2 tats: Defects if defected twice.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Indicates whether the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.TFTT) → None [https://docs.python.org/3/library/constants.html#None]

	Tit for 2 tats: Defects if defected twice.

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.TFTT, time_step: int [https://docs.python.org/3/library/functions.html#int], action_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.games.AbstractGame, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.TFTT) → bool [https://docs.python.org/3/library/functions.html#bool]

	Indicates whether the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.TFTT) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.TTFT

	
class TTFT(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.TTFT)

	Bases: AbstractNFGStrategy

2 Tits for tat: Defects twice if defected.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Indicates whether the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.TTFT) → None [https://docs.python.org/3/library/constants.html#None]

	2 Tits for tat: Defects twice if defected.

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.TTFT, time_step: int [https://docs.python.org/3/library/functions.html#int], action_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.games.AbstractGame, egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.TTFT) → bool [https://docs.python.org/3/library/functions.html#bool]

	Indicates whether the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.TwoActions.TTFT) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.nfg_strategies

Classes

	AbstractNFGStrategy

	

	Detective

	A Detective player who tries to analyze the opponent.

	EpsilonGRIM

	A GRIM player with randomized first action and probability of making mistakes.

	EpsilonTFT

	A TFT player with randomized first action and probability of making mistakes.

	MemoryOneStrategy

	Defines a Memory One strategy.

	Random

	Random seed generator.

egttools.behaviors.NormalForm.TwoActions.nfg_strategies.AbstractNFGStrategy

	
class AbstractNFGStrategy(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy)

	Bases: pybind11_object

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Property indicating if the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → None [https://docs.python.org/3/library/constants.html#None]

	

	
__new__(**kwargs)

	

	
get_action(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy, time_step: int [https://docs.python.org/3/library/functions.html#int], action_prev: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → bool [https://docs.python.org/3/library/functions.html#bool]

	Property indicating if the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.nfg_strategies.Detective

	
class Detective

	Bases: AbstractNFGStrategy

A Detective player who tries to analyze the opponent.

This player will always play the same initial sequence of
Cooperate, Defect, Cooperate, Cooperate. If the opponent defects
during this initial sequence, then Defective will play TFT from the 5th
round on. Otherwise, Detective will play always Defect.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Property indicating if the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__()

	A Detective player who tries to analyze the opponent.

This player will always play the same initial sequence of
Cooperate, Defect, Cooperate, Cooperate. If the opponent defects
during this initial sequence, then Defective will play TFT from the 5th
round on. Otherwise, Detective will play always Defect.

	
__new__(**kwargs)

	

	
__str__()

	Return str(self).

	
get_action(time_step, action_prev)

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → bool [https://docs.python.org/3/library/functions.html#bool]

	Property indicating if the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.nfg_strategies.EpsilonGRIM

	
class EpsilonGRIM(p, epsilon)

	Bases: AbstractNFGStrategy

A GRIM player with randomized first action and probability
of making mistakes.

This player acts exactly as GRIM (cooperates until the opponent defects),
however in the first round it will cooperate with probability :param p
and in the subsequent rounds it has a probability
:param epsilon of making a mistake and changing its action.

	Parameters

	
	p (float [https://docs.python.org/3/library/functions.html#float]) – Probability of cooperating in the first round

	epsilon (float [https://docs.python.org/3/library/functions.html#float]) – Probability of making a mistake in any round after round 1.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Property indicating if the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(p, epsilon)

	A GRIM player with randomized first action and probability
of making mistakes.

This player acts exactly as GRIM (cooperates until the opponent defects),
however in the first round it will cooperate with probability :param p
and in the subsequent rounds it has a probability
:param epsilon of making a mistake and changing its action.

	Parameters

	
	p (float [https://docs.python.org/3/library/functions.html#float]) – Probability of cooperating in the first round

	epsilon (float [https://docs.python.org/3/library/functions.html#float]) – Probability of making a mistake in any round after round 1.

	
__new__(**kwargs)

	

	
__str__()

	Return str(self).

	
get_action(time_step, action_prev)

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → bool [https://docs.python.org/3/library/functions.html#bool]

	Property indicating if the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.nfg_strategies.EpsilonTFT

	
class EpsilonTFT(p, epsilon)

	Bases: AbstractNFGStrategy

A TFT player with randomized first action and probability
of making mistakes.

This player acts exactly as Tit-for-Tat (repeats
the last action of the opponent), however in the
first round it will cooperate with probability :param p
and in the subsequent rounds it has a probability
:param epsilon of making a mistake and changing its action.

	Parameters

	
	p (float [https://docs.python.org/3/library/functions.html#float]) – Probability of cooperating in the first round

	epsilon (float [https://docs.python.org/3/library/functions.html#float]) – Probability of making a mistake in any round after round 1.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Property indicating if the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(p, epsilon)

	A TFT player with randomized first action and probability
of making mistakes.

This player acts exactly as Tit-for-Tat (repeats
the last action of the opponent), however in the
first round it will cooperate with probability :param p
and in the subsequent rounds it has a probability
:param epsilon of making a mistake and changing its action.

	Parameters

	
	p (float [https://docs.python.org/3/library/functions.html#float]) – Probability of cooperating in the first round

	epsilon (float [https://docs.python.org/3/library/functions.html#float]) – Probability of making a mistake in any round after round 1.

	
__new__(**kwargs)

	

	
__str__()

	Return str(self).

	
get_action(time_step, action_prev)

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → bool [https://docs.python.org/3/library/functions.html#bool]

	Property indicating if the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.nfg_strategies.MemoryOneStrategy

	
class MemoryOneStrategy(action_first_round, strategy, is_stochastic)

	Bases: AbstractNFGStrategy

Defines a Memory One strategy.

	Parameters

	
	action_first_round (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) – Indicates the action this strategy will play in the first round. In the case that is_stochastic
is True, then this value should be a probability of Cooperation

	strategy (Union[Dict[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]], Dict[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], float [https://docs.python.org/3/library/functions.html#float]]]) – A dictionary with tuples defining the action/probability of cooperation for
each pair of previous actions of self and the opponent, e.g., CC, DC….

	is_stochastic (bool [https://docs.python.org/3/library/functions.html#bool]) – Indicates whether the strategy is stochastic or not. If it is stochastic, then the values both
for the action_first_round and the strategy should be probabilities of Cooperation. If it is
False, then 1 - indicates Cooperation and 0 - indicates Defection.

Methods

	get_action

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	is_stochastic

	Property indicating if the strategy is stochastic.

	type

	Returns a string indicating the Strategy Type.

	
__init__(action_first_round, strategy, is_stochastic)

	Defines a Memory One strategy.

	Parameters

	
	action_first_round (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) – Indicates the action this strategy will play in the first round. In the case that is_stochastic
is True, then this value should be a probability of Cooperation

	strategy (Union[Dict[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]], Dict[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], float [https://docs.python.org/3/library/functions.html#float]]]) – A dictionary with tuples defining the action/probability of cooperation for
each pair of previous actions of self and the opponent, e.g., CC, DC….

	is_stochastic (bool [https://docs.python.org/3/library/functions.html#bool]) – Indicates whether the strategy is stochastic or not. If it is stochastic, then the values both
for the action_first_round and the strategy should be probabilities of Cooperation. If it is
False, then 1 - indicates Cooperation and 0 - indicates Defection.

	
__new__(**kwargs)

	

	
__str__()

	Return str(self).

	
get_action(time_step, action_prev)

	Returns an action in function of time_step round and the previous action action_prev of the opponent.

	Parameters

	
	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Current round.

	action_prev (int [https://docs.python.org/3/library/functions.html#int]) – Previous action of the opponent.

	Returns

	The action selected by the strategy.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.behaviors.NormalForm.TwoActions.Cooperator, egttools.behaviors.NormalForm.TwoActions.Defector, egttools.behaviors.NormalForm.TwoActions.Random, egttools.behaviors.NormalForm.TwoActions.TFT, egttools.behaviors.NormalForm.TwoActions.SuspiciousTFT, egttools.behaviors.NormalForm.TwoActions.GenerousTFT, egttools.behaviors.NormalForm.TwoActions.GradualTFT, egttools.behaviors.NormalForm.TwoActions.ImperfectTFT, egttools.behaviors.NormalForm.TwoActions.TFTT, egttools.behaviors.NormalForm.TwoActions.TTFT, egttools.behaviors.NormalForm.TwoActions.GRIM, egttools.behaviors.NormalForm.TwoActions.Pavlov

	
is_stochastic(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → bool [https://docs.python.org/3/library/functions.html#bool]

	Property indicating if the strategy is stochastic.

	
type(self: egttools.numerical.numerical.behaviors.NormalForm.AbstractNFGStrategy) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string indicating the Strategy Type.

egttools.behaviors.NormalForm.TwoActions.nfg_strategies.Random

	
class Random

	Bases: pybind11_object

Random seed generator.

Methods

	generate

	Generates a random seed.

	init

	Overloaded function.

	seed

	This static methods changes the seed of egttools.Random.

	
__init__(*args, **kwargs)

	

	
__new__(**kwargs)

	

	
static generate() → int [https://docs.python.org/3/library/functions.html#int]

	Generates a random seed.

The generated seed can be used to seed other pseudo-random generators,
so that the initial state of the simulation can always be tracked and
the simulation can be reproduced. This is very important both for debugging
purposes as well as for scientific research. However, this approach should
NOT be used in any cryptographic applications, it is NOT safe.

	Returns

	A random seed which can be used to seed new random generators.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
static init(*args, **kwargs)

	Overloaded function.

	init() -> egttools.numerical.numerical.Random

This static method initializes the random seed.

This static method initializes the random seed generator from random_device
and returns an instance of egttools.Random which is used
to seed the random generators used across egttools.

	egttools.Random
	An instance of the random seed generator.

	init(seed: int) -> egttools.numerical.numerical.Random

This static method initializes the random seed generator from seed.

This static method initializes the random seed generator from seed
and returns an instance of egttools.Random which is used
to seed the random generators used across egttools.

	seedint
	Integer value used to seed the random generator.

	egttools.Random
	An instance of the random seed generator.

	
static seed(seed: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	This static methods changes the seed of egttools.Random.

	Parameters

	int – The new seed for the egttools.Random module which is used to seed
every other pseudo-random generation in the egttools package.

egttools.behaviors.opinion_behaviors

Functions

	opinion_factory

	

Classes

	Opinion

	

egttools.behaviors.opinion_behaviors.opinion_factory

	
opinion_factory(strategies)

	

egttools.behaviors.opinion_behaviors.Opinion

	
class Opinion(opinion, tag)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Methods

	get_action

	

Attributes

	type

	

	
__init__(opinion, tag)

	

	
get_action()

	

	
property type

	

egttools.behaviors.pgg_behaviors

The behaviors.pgg_behaviors submodule contains strategies which can
be used with egttools.games.pgg game.

Functions

	player_factory

	
	rtype

	List [https://docs.python.org/3/library/typing.html#typing.List][PGGOneShotStrategy]

Classes

	PGGOneShotStrategy

	

egttools.behaviors.pgg_behaviors.player_factory

	
player_factory(actions)

	
	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][PGGOneShotStrategy]

egttools.behaviors.pgg_behaviors.PGGOneShotStrategy

	
class PGGOneShotStrategy(action)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Methods

	get_action

	
	rtype

	int [https://docs.python.org/3/library/functions.html#int]

Attributes

	type

	
	rtype

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__init__(action)

	

	
get_action()

	
	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property type: str [https://docs.python.org/3/library/stdtypes.html#str]

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

egttools.datastructures

Custom data structures used to store data from numerical simulations.

Classes

	DataTable

	Data structure that allows to store information in table format.

egttools.datastructures.DataTable

	
class DataTable(self: egttools.numerical.numerical.DataStructures.DataTable, nb_rows: int [https://docs.python.org/3/library/functions.html#int], nb_columns: int [https://docs.python.org/3/library/functions.html#int], headers: List[str [https://docs.python.org/3/library/stdtypes.html#str]], column_types: List[str [https://docs.python.org/3/library/stdtypes.html#str]])

	Bases: pybind11_object

Data structure that allows to store information in table format. Headers give the

Methods

Attributes

	cols

	returns the number of columns

	column_types

	

	data

	

	headers

	

	rows

	returns the number of rows

	
__init__(self: egttools.numerical.numerical.DataStructures.DataTable, nb_rows: int [https://docs.python.org/3/library/functions.html#int], nb_columns: int [https://docs.python.org/3/library/functions.html#int], headers: List[str [https://docs.python.org/3/library/stdtypes.html#str]], column_types: List[str [https://docs.python.org/3/library/stdtypes.html#str]]) → None [https://docs.python.org/3/library/constants.html#None]

	Data structure that allows to store information in table format. Headers give the

	
__new__(**kwargs)

	

	
property cols

	returns the number of columns

	
property column_types

	

	
property data

	

	
property headers

	

	
property rows

	returns the number of rows

egttools.distributions

Helpful implementations of stochastic distributions.

Functions

	binom

	Calculates the binomial coefficient C(n, k).

	comb

	Calculates the binomial coefficient C(n, k).

	multinomial_pmf

	Calculates the probability density function of a multivariate hyper-geometric distribution.

	multivariate_hypergeometric_pdf

	Overloaded function.

Classes

	TimingUncertainty

	Timing uncertainty distribution container.

egttools.distributions.binom

	
binom(n: int [https://docs.python.org/3/library/functions.html#int], k: int [https://docs.python.org/3/library/functions.html#int]) → float [https://docs.python.org/3/library/functions.html#float]

	Calculates the binomial coefficient C(n, k).

This method is approximate and will return a float value.
The result should be equivalent to the one produced by
scipy.special.binom.

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – size of the fixed set

	k (int [https://docs.python.org/3/library/functions.html#int]) – size of the unordered subset

	Returns

	The binomial coefficient C(n, k).

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

See also

egttools.distributions.multivariate_hypergeometric_pdf, egttools.distributions.comb

egttools.distributions.comb

	
comb(n: int [https://docs.python.org/3/library/functions.html#int], k: int [https://docs.python.org/3/library/functions.html#int]) → object [https://docs.python.org/3/library/functions.html#object]

	Calculates the binomial coefficient C(n, k).

The number of combinations of :param n things taken :param k at a time.
This is often expressed as “N choose k”.

This method is exact and should be equivalent scipy.special.comb.
However, if the outcome or any intermediary product occupies more than
an uint128_t, the result will not be correct, since there will be
an overflow!

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – size of the fixed set

	k (int [https://docs.python.org/3/library/functions.html#int]) – size of the unordered subset

	Returns

	The binomial coefficient C(n, k).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.distributions.multivariate_hypergeometric_pdf, egttools.distributions.binom

egttools.distributions.multinomial_pmf

	
multinomial_pmf(x: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]], n: int [https://docs.python.org/3/library/functions.html#int], p: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Calculates the probability density function of a multivariate hyper-geometric distribution.

This function returns the probability that a sample of size
:param n with counts of each type indicated by :param x
would be drawn from a population with frequencies :param p.

Both :param population_counts and :param sample_counts must be of shape
(k,), where k is the number of types of objects in the population.

For the application often used in this library, :param n would be the size of the group,
:param k would be the number of strategies, :param x would be group configuration and
:param p would be the state of the population (in infinite populations).

	Parameters

	
	x (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Vector of containing the counts of each element that should be drawn.
Must sum to n.

	n (int [https://docs.python.org/3/library/functions.html#int]) – Total number of elements to draw

	p (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Vector indicating the total frequency of each element. Must sum to 1.

	Returns

	The probability that a sample of size n with counts x of each type is
draw from a population with total frequencies per type defined by p.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

See also

egttools.distributions.multivariate_hypergeometric_pdf, egttools.distributions.binom, egttools.distributions.comb

egttools.distributions.multivariate_hypergeometric_pdf

	
multivariate_hypergeometric_pdf(*args, **kwargs)

	Overloaded function.

	multivariate_hypergeometric_pdf(m: int, k: int, n: int, sample_counts: List[int], population_counts: numpy.ndarray[numpy.uint64[m, 1]]) -> float

Calculates the probability density function of a multivariate hyper-geometric distribution.

This function returns the probability that a sample :param sample_counts
would be drawn from a population :param population_counts. Assuming that
the population is of size :param m, has :param k objects, and the sample
has size :param n.

Both :param population_counts and :param sample_counts must be of shape
(k,). The sum of all entries in :param population_counts,
must sum to :param m, and the sum of all entries in :param sample_counts
must sum to :param n.

For the application often used in this library, :param m would be the size of the population,
:param k would be the number of strategies, :param n would be the group size, :param sample_counts
would contain the counts of each strategy in the group, and :param population_counts contains the
counts of each strategy in the population.

	mint
	size of the population

	kint
	number of objects in the population

	nint
	size of the sample

	sample_countsList[int]
	a vector containing the counts of each objects in the sample

	population_countsnumpy.ndarray
	a vector containing the counts of each objects in the population

	float
	The probability that a sample of size n in a population of k objects

egttools.distributions.binom
egttools.distributions.comb

	multivariate_hypergeometric_pdf(m: int, k: int, n: int, sample_counts: numpy.ndarray[numpy.uint64[m, 1]], population_counts: numpy.ndarray[numpy.uint64[m, 1]]) -> float

Calculates the probability density function of a multivariate hyper-geometric distribution.

This function returns the probability that a sample :param sample_counts
would be drawn from a population :param population_counts. Assuming that
the population is of size :param m, has :param k objects, and the sample
has size :param n.

Both :param population_counts and :param sample_counts must be of shape
(k,). The sum of all entries in :param population_counts,
must sum to :param m, and the sum of all entries in :param sample_counts
must sum to :param n.

For the application often used in this library, :param m would be the size of the population,
:param k would be the number of strategies, :param n would be the group size, :param sample_counts
would contain the counts of each strategy in the group, and :param population_counts contains the
counts of each strategy in the population.

	mint
	size of the population

	kint
	number of objects in the population

	nint
	size of the sample

	sample_countsList[int]
	a vector containing the counts of each objects in the sample

	population_countsnumpy.ndarray
	a vector containing the counts of each objects in the population

	float
	The probability that a sample of size n in a population of k objects

egttools.distributions.binom
egttools.distributions.comb

egttools.distributions.TimingUncertainty

	
class TimingUncertainty(self: egttools.numerical.numerical.distributions.TimingUncertainty, p: float [https://docs.python.org/3/library/functions.html#float], max_rounds: int [https://docs.python.org/3/library/functions.html#int] = 0)

	Bases: pybind11_object

Timing uncertainty distribution container.

This class provides methods to calculate the final round of the game according to some predifined distribution, which is geometric by default.

	Parameters

	
	p (float [https://docs.python.org/3/library/functions.html#float]) – Probability that the game will end after the minimum number of rounds.

	max_rounds (int [https://docs.python.org/3/library/functions.html#int]) – maximum number of rounds that the game can take (if 0, there is no maximum).

Methods

	calculate_end

	Calculates the final round limiting by max_rounds, i.e., outputs a value between[min_rounds, max_rounds].

	calculate_full_end

	Calculates the final round, i.e., outputs a value between[min_rounds, Inf].

Attributes

	max_rounds

	

	p

	

	
__init__(self: egttools.numerical.numerical.distributions.TimingUncertainty, p: float [https://docs.python.org/3/library/functions.html#float], max_rounds: int [https://docs.python.org/3/library/functions.html#int] = 0) → None [https://docs.python.org/3/library/constants.html#None]

	Timing uncertainty distribution container.

This class provides methods to calculate the final round of the game according to some predifined distribution, which is geometric by default.

	Parameters

	
	p (float [https://docs.python.org/3/library/functions.html#float]) – Probability that the game will end after the minimum number of rounds.

	max_rounds (int [https://docs.python.org/3/library/functions.html#int]) – maximum number of rounds that the game can take (if 0, there is no maximum).

	
__new__(**kwargs)

	

	
calculate_end(self: egttools.numerical.numerical.distributions.TimingUncertainty, min_rounds: int, random_generator: std::mersenne_twister_engine<unsigned long, 64ul, 312ul, 156ul, 31ul, 13043109905998158313ul, 29ul, 6148914691236517205ul, 17ul, 8202884508482404352ul, 37ul, 18444473444759240704ul, 43ul, 6364136223846793005ul>) → int [https://docs.python.org/3/library/functions.html#int]

	Calculates the final round limiting by max_rounds, i.e., outputs a value between[min_rounds, max_rounds].

	
calculate_full_end(self: egttools.numerical.numerical.distributions.TimingUncertainty, min_rounds: int, random_generator: std::mersenne_twister_engine<unsigned long, 64ul, 312ul, 156ul, 31ul, 13043109905998158313ul, 29ul, 6148914691236517205ul, 17ul, 8202884508482404352ul, 37ul, 18444473444759240704ul, 43ul, 6364136223846793005ul>) → int [https://docs.python.org/3/library/functions.html#int]

	Calculates the final round, i.e., outputs a value between[min_rounds, Inf].

	
property max_rounds

	

	
property p

	

egttools.games

API reference documentation for the games submodule.

Classes

	AbstractGame

	Abstract class which must be implemented by any new game.

	AbstractNPlayerGame

	Abstract N-Player Game.

	AbstractTwoPLayerGame

	This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its expected payoff given the population state.

	CRDGame

	Collective Risk Dilemma.

	CRDGameTU

	This class implements a One-Shot Collective Risk Dilemma.

	CommonPoolResourceDilemma

	Abstract N-Player Game.

	CommonPoolResourceDilemmaCommitment

	Common Pool resource game with commitment, but the threshold is set as another strategy :type group_size: int [https://docs.python.org/3/library/functions.html#int] :param group_size: Size of the group playing the game.

	InformalRiskGame

	Game of informal risk sharing.

	Matrix2PlayerGameHolder

	Holder class for 2-player games for which the expected payoff between strategies has already been calculated.

	MatrixNPlayerGameHolder

	Holder class for N-player games for which the expected payoff between strategies has already been calculated.

	NPlayerStagHunt

	This game is based on the article Pacheco et al., ‘Evolutionary Dynamics of Collective Action in N -Person Stag Hunt Dilemmas’.

	NormalFormGame

	Overloaded function.

	OneShotCRD

	One-Shot Collective Risk Dilemma (CRD).

	PGG

	Classical Public Goods game with only 2 possible contributions (o or cost).

	egttools.games.abstract_games

	

	egttools.games.informal_risk

	

	egttools.games.nonlinear_games

	

	egttools.games.opinion_game

	

	egttools.games.pgg

	

egttools.games.AbstractGame

	
class AbstractGame(self: egttools.numerical.numerical.games.AbstractGame)

	Bases: pybind11_object

Abstract class which must be implemented by any new game.

This class provides a common interface for Games, so that they can be passed to the methods
(both analytical and numerical) implemented in egttools.

You must implement the following methods:
- play(group_composition: List[int], game_payoffs: List[float]) -> None
- calculate_payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- calculate_fitness(strategy_index: int, pop_size: int, strategies: numpy.ndarray[numpy.uint64[m, 1]]) -> float
- __str__
- type() -> str
- payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- payoff(strategy: int, group_composition: List[int]) -> float
- nb_strategies() -> int
- save_payoffs(file_name: str) -> None

See also

egttools.games.AbstractNPlayerGame

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	
__init__(self: egttools.numerical.numerical.games.AbstractGame) → None [https://docs.python.org/3/library/constants.html#None]

	Abstract class which must be implemented by any new game.

This class provides a common interface for Games, so that they can be passed to the methods
(both analytical and numerical) implemented in egttools.

You must implement the following methods:
- play(group_composition: List[int], game_payoffs: List[float]) -> None
- calculate_payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- calculate_fitness(strategy_index: int, pop_size: int, strategies: numpy.ndarray[numpy.uint64[m, 1]]) -> float
- __str__
- type() -> str
- payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- payoff(strategy: int, group_composition: List[int]) -> float
- nb_strategies() -> int
- save_payoffs(file_name: str) -> None

See also

egttools.games.AbstractNPlayerGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.AbstractGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs(self: egttools.numerical.numerical.games.AbstractGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(self: egttools.numerical.numerical.games.AbstractGame, group_composition: List[int [https://docs.python.org/3/library/functions.html#int]], game_payoffs: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	
save_payoffs(self: egttools.numerical.numerical.games.AbstractGame, file_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	
type(self: egttools.numerical.numerical.games.AbstractGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

egttools.games.AbstractNPlayerGame

	
class AbstractNPlayerGame(self: egttools.numerical.numerical.games.AbstractNPlayerGame, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int])

	Bases: AbstractGame

Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	group_size

	Size of the group.

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	update_payoff

	update an entry of the payoff matrix

	
__init__(self: egttools.numerical.numerical.games.AbstractNPlayerGame, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
group_size(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
nb_group_configurations(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(self: egttools.numerical.numerical.games.AbstractNPlayerGame, group_composition: List[int [https://docs.python.org/3/library/functions.html#int]], game_payoffs: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	
save_payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame, file_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	
type(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

	
update_payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], group_configuration_index: int [https://docs.python.org/3/library/functions.html#int], value: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	update an entry of the payoff matrix

egttools.games.AbstractTwoPLayerGame

	
class AbstractTwoPLayerGame(nb_strategies)

	Bases: AbstractGame

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is 2 player and the fitness is calculated with this assumption!

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

	It assumes that you have at least the following attributes:
	1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, self.nb_strategies_).

For normal form games:
1. There is already a class called NormalFormGame available which you can use for these types of games. If
for any reason this does not cover your needs then:
2. If your game is normal form, but iterated, you should create another variable to contain the payoff matrix
for one round of the game, since self.payoffs_ will contain the expected payoffs over the several rounds
of the game.
3. If the game is one-shot and normal form, self.payoffs_ is the payoff matrix of the game, and you do not
need to do anything in calculate_payoffs besides calling this matrix.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

This class must be initialized with the total number of strategies
that will be used and the size of the group in which the game takes place.
This is required to calculate the number of group configurations and the correct
shape of the payoff matrix.

	Parameters

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

Methods

	calculate_fitness

	Calculates the Fitness of a strategy for a given population state.

	calculate_payoffs

	This method calculates the payoffs for each strategy in each possible group configuration.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	This method fills the game_payoffs container with the payoff of each strategy given the group_composition.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	
__init__(nb_strategies)

	This class must be initialized with the total number of strategies
that will be used and the size of the group in which the game takes place.
This is required to calculate the number of group configurations and the correct
shape of the payoff matrix.

	Parameters

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	
__new__(**kwargs)

	

	
__str__()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
calculate_fitness(player_strategy, pop_size, population_state)

	Calculates the Fitness of a strategy for a given population state.

The calculation is done by computing the expected payoff over all possible strategy matches.

	Parameters

	
	player_strategy (int [https://docs.python.org/3/library/functions.html#int]) – index of the strategy.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the population - Only necessary for compatibility with the C++ implementation
(might be eliminated in the future).

	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – vector with the population state (the number of players adopting each strategy).

	Returns

	The fitness of the population.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
abstract calculate_payoffs()

	This method calculates the payoffs for each strategy in each possible group configuration. Thus, it must
fill the self.payoffs_ numpy.ndarray with these payoffs values. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration.

	Returns

	The payoff matrix of the game.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
nb_strategies()

	Number of different strategies playing the game.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
payoff(strategy, group_composition)

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs()

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
abstract play(group_composition, game_payoffs)

	This method fills the game_payoffs container with the payoff of each strategy given the group_composition.

Strategies not present in the group will receive 0 payoff by default.

	Parameters

	
	group_composition (Union[List[int [https://docs.python.org/3/library/functions.html#int]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A List or a numpy.ndarray containing the counts of each strategy in the group (e.g., for a game with 3
possible strategies and group size 4, the following List is possible [3, 0, 1]).

	game_payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A container for the payoffs that will be calculated. This avoids needing to create a new array at each
call and should speed up computation.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
save_payoffs(file_name)

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
type()

	returns the type of game.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

egttools.games.CRDGame

	
class CRDGame(self: egttools.numerical.numerical.games.CRDGame, endowment: int [https://docs.python.org/3/library/functions.html#int], threshold: int [https://docs.python.org/3/library/functions.html#int], nb_rounds: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int], risk: float [https://docs.python.org/3/library/functions.html#float], enhancement_factor: float [https://docs.python.org/3/library/functions.html#float], strategies: list [https://docs.python.org/3/library/stdtypes.html#list])

	Bases: AbstractGame

Collective Risk Dilemma.

This allows you to define any number of strategies by passing them
as a list. All strategies must be of type AbstractCRDStrategy *.

The CRD dilemma implemented here follows the description of:
Milinski, M., Sommerfeld, R. D., Krambeck, H.-J., Reed, F. A.,
& Marotzke, J. (2008). The collective-risk social dilemma and the prevention of simulated
dangerous climate change. Proceedings of the National Academy of Sciences of the United States of America, 105(7),
2291–2294. https://doi.org/10.1073/pnas.0709546105

	Parameters

	
	endowment (int [https://docs.python.org/3/library/functions.html#int]) – Initial endowment for all players.

	threshold (int [https://docs.python.org/3/library/functions.html#int]) – Collective target that the group must reach.

	nb_rounds (int [https://docs.python.org/3/library/functions.html#int]) – Number of rounds of the game.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group that will play the CRD.

	risk (float [https://docs.python.org/3/library/functions.html#float]) – The probability that all members will lose their remaining endowment if the threshold is not achieved.

	enhancement_factor (float [https://docs.python.org/3/library/functions.html#float]) – The payoffs of each strategy are multiplied by this factor if the target is reached
(this may enables the inclusion of a surplus for achieving the goal).

	strategies (List[egttools.behaviors.CRD.AbstractCRDStrategy]) – A list containing references of AbstractCRDStrategy strategies (or child classes).

See also

egttools.games.AbstractGame, egttools.games.NormalFormGame, egttools.behaviors.CRD.AbstractCRDStrategy

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_group_achievement

	calculates the group achievement for a given stationary distribution.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	calculate_polarization

	calculates the fraction of players that contribute above, below or equal to the fair contribution (E/2)in a give population state.

	calculate_polarization_success

	calculates the fraction of players (from successful groups)) that contribute above, below or equal to the fair contribution (E/2)in a give population state.

	calculate_population_group_achievement

	calculates the group achievement in the population at a given state.

	nb_strategies

	Number of different strategies which are playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the expected payoffs of each strategy vs each possible game state.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Saves the payoff matrix in a txt file.

	type

	

Attributes

	endowment

	Initial endowment for all players.

	enhancement_factor

	The payoffs of each strategy are multiplied by this factor if the target is reached (this may enables the inclusion of a surplus for achieving the goal).

	group_achievement_per_group

	

	group_size

	Size of the group which will play the game.

	nb_rounds

	Number of rounds of the game.

	nb_states

	Number of combinations of 2 strategies that can be matched in the game.

	risk

	Probability that all players will lose their remaining endowment if the target si not achieved.

	strategies

	A list with pointers to the strategies that are playing the game.

	target

	Collective target which needs to be achieved by the group.

	
__init__(self: egttools.numerical.numerical.games.CRDGame, endowment: int [https://docs.python.org/3/library/functions.html#int], threshold: int [https://docs.python.org/3/library/functions.html#int], nb_rounds: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int], risk: float [https://docs.python.org/3/library/functions.html#float], enhancement_factor: float [https://docs.python.org/3/library/functions.html#float], strategies: list [https://docs.python.org/3/library/stdtypes.html#list]) → None [https://docs.python.org/3/library/constants.html#None]

	Collective Risk Dilemma.

This allows you to define any number of strategies by passing them
as a list. All strategies must be of type AbstractCRDStrategy *.

The CRD dilemma implemented here follows the description of:
Milinski, M., Sommerfeld, R. D., Krambeck, H.-J., Reed, F. A.,
& Marotzke, J. (2008). The collective-risk social dilemma and the prevention of simulated
dangerous climate change. Proceedings of the National Academy of Sciences of the United States of America, 105(7),
2291–2294. https://doi.org/10.1073/pnas.0709546105

	Parameters

	
	endowment (int [https://docs.python.org/3/library/functions.html#int]) – Initial endowment for all players.

	threshold (int [https://docs.python.org/3/library/functions.html#int]) – Collective target that the group must reach.

	nb_rounds (int [https://docs.python.org/3/library/functions.html#int]) – Number of rounds of the game.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group that will play the CRD.

	risk (float [https://docs.python.org/3/library/functions.html#float]) – The probability that all members will lose their remaining endowment if the threshold is not achieved.

	enhancement_factor (float [https://docs.python.org/3/library/functions.html#float]) – The payoffs of each strategy are multiplied by this factor if the target is reached
(this may enables the inclusion of a surplus for achieving the goal).

	strategies (List[egttools.behaviors.CRD.AbstractCRDStrategy]) – A list containing references of AbstractCRDStrategy strategies (or child classes).

See also

egttools.games.AbstractGame, egttools.games.NormalFormGame, egttools.behaviors.CRD.AbstractCRDStrategy

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.CRDGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.CRDGame, player_strategy: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], population_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	player_strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_group_achievement(self: egttools.numerical.numerical.games.CRDGame, population_size: int [https://docs.python.org/3/library/functions.html#int], stationary_distribution: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	calculates the group achievement for a given stationary distribution.

	
calculate_payoffs(self: egttools.numerical.numerical.games.CRDGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
Therefore, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

It also updates the coop_level matrices by calculating level of cooperation
at any given population state

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
calculate_polarization(self: egttools.numerical.numerical.games.CRDGame, population_size: int [https://docs.python.org/3/library/functions.html#int], population_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[3, 1]]

	calculates the fraction of players that contribute above, below or equal to the fair contribution (E/2)in a give population state.

	
calculate_polarization_success(self: egttools.numerical.numerical.games.CRDGame, population_size: int [https://docs.python.org/3/library/functions.html#int], population_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[3, 1]]

	calculates the fraction of players (from successful groups)) that contribute above, below or equal to the fair contribution (E/2)in a give population state.

	
calculate_population_group_achievement(self: egttools.numerical.numerical.games.CRDGame, population_size: int [https://docs.python.org/3/library/functions.html#int], population_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	calculates the group achievement in the population at a given state.

	
nb_strategies(self: egttools.numerical.numerical.games.CRDGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies which are playing the game.

	
payoff(self: egttools.numerical.numerical.games.CRDGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.CRDGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the expected payoffs of each strategy vs each possible game state.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][np.float64[m,n]]

	
play(self: egttools.numerical.numerical.games.CRDGame, arg0: List[int [https://docs.python.org/3/library/functions.html#int]], arg1: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	
save_payoffs(self: egttools.numerical.numerical.games.CRDGame, arg0: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Saves the payoff matrix in a txt file.

	
type(self: egttools.numerical.numerical.games.CRDGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
property endowment

	Initial endowment for all players.

	
property enhancement_factor

	The payoffs of each strategy are multiplied by this factor if the target is reached (this may enables the inclusion of a surplus for achieving the goal).

	
property group_achievement_per_group

	

	
property group_size

	Size of the group which will play the game.

	
property nb_rounds

	Number of rounds of the game.

	
property nb_states

	Number of combinations of 2 strategies that can be matched in the game.

	
property risk

	Probability that all players will lose their remaining endowment if the target si not achieved.

	
property strategies

	A list with pointers to the strategies that are playing the game.

	
property target

	Collective target which needs to be achieved by the group.

egttools.games.CRDGameTU

	
class CRDGameTU(self: egttools.numerical.numerical.games.CRDGameTU, endowment: int [https://docs.python.org/3/library/functions.html#int], threshold: int [https://docs.python.org/3/library/functions.html#int], min_rounds: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int], risk: float [https://docs.python.org/3/library/functions.html#float], tu: egttools.numerical.numerical.distributions.TimingUncertainty, strategies: list [https://docs.python.org/3/library/stdtypes.html#list])

	Bases: AbstractGame

This class implements a One-Shot Collective Risk Dilemma.

This N-player game was first introduced in “Santos, F. C., & Pacheco, J. M. (2011).
Risk of collective failure provides an escape from the tragedy of the commons.
Proceedings of the National Academy of Sciences of the United States of America, 108(26), 10421–10425.”.

The game consists of a group of size group_size (N) which can be composed of
Cooperators (Cs) who will contribute a fraction cost (c) of their
endowment (b) to the public good. And of Defectors (Ds) who contribute 0.

If the total contribution of the group is equal or surpasses the collective target Mcb,
with M being the min_nb_cooperators, then all participants will receive as payoff
their remaining endowment. Which is, Cs receive b - cb and Ds receive b. Otherwise, all
participants receive 0 endowment with a probability equal to risk (r), and will
keep their endowment with probability 1-r. This means that each group must have at least
M Cs for the collective target to be achieved.

	Parameters

	
	endowment (float [https://docs.python.org/3/library/functions.html#float]) – The initial endowment (b) received by all participants

	cost (float [https://docs.python.org/3/library/functions.html#float]) – The fraction of the endowment that Cooperators contribute to the public good.
This value must be in the interval [0, 1]

	risk (float [https://docs.python.org/3/library/functions.html#float]) – The risk that all members of the group will lose their remaining endowment if the
collective target is not achieved.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the group (N)

	min_nb_cooperators (int [https://docs.python.org/3/library/functions.html#int]) – The minimum number of cooperators (M) required to reach the collective target.
In other words, the collective target is reached if the collective effort is
at least Mcb. This value must be in the discrete interval [[0, N]].

See also

egttools.games.CRDGame, egttools.games.CRDGameTU

Methods

	calculate_fitness

	Calculates the fitness of a strategy given a population state.

	calculate_group_achievement

	calculates the group achievement for a given stationary distribution.

	calculate_payoffs

	Calculates the payoffs of every strategy in each possible group composition.

	calculate_polarization

	calculates the fraction of players that contribute above, below or equal to the fair contribution (E/2)in a give population state.

	calculate_polarization_success

	calculates the fraction of players (from successful groups)) that contribute above, below or equal to the fair contribution (E/2)in a give population state.

	calculate_population_group_achievement

	calculates the group achievement in the population at a given state.

	nb_strategies

	Number of different strategies which are playing the game.

	payoff

	returns the payoff of a strategy given a group composition.

	payoffs

	returns the expected payoffs of each strategy vs each possible game state

	play

	Plays the One-shop CRD and update the game_payoffs given the group_composition.

	save_payoffs

	Saves the payoff matrix in a txt file.

	type

	

Attributes

	endowment

	Initial endowment for all players.

	group_size

	Size of the group which will play the game.

	min_rounds

	Minimum number of rounds of the game.

	nb_states

	Number of combinations of 2 strategies that can be matched in the game.

	risk

	Probability that all players will lose their remaining endowment if the target si not achieved.

	strategies

	A list with pointers to the strategies that are playing the game.

	target

	Collective target which needs to be achieved by the group.

	
__init__(self: egttools.numerical.numerical.games.CRDGameTU, endowment: int [https://docs.python.org/3/library/functions.html#int], threshold: int [https://docs.python.org/3/library/functions.html#int], min_rounds: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int], risk: float [https://docs.python.org/3/library/functions.html#float], tu: egttools.numerical.numerical.distributions.TimingUncertainty, strategies: list [https://docs.python.org/3/library/stdtypes.html#list]) → None [https://docs.python.org/3/library/constants.html#None]

	This class implements a One-Shot Collective Risk Dilemma.

This N-player game was first introduced in “Santos, F. C., & Pacheco, J. M. (2011).
Risk of collective failure provides an escape from the tragedy of the commons.
Proceedings of the National Academy of Sciences of the United States of America, 108(26), 10421–10425.”.

The game consists of a group of size group_size (N) which can be composed of
Cooperators (Cs) who will contribute a fraction cost (c) of their
endowment (b) to the public good. And of Defectors (Ds) who contribute 0.

If the total contribution of the group is equal or surpasses the collective target Mcb,
with M being the min_nb_cooperators, then all participants will receive as payoff
their remaining endowment. Which is, Cs receive b - cb and Ds receive b. Otherwise, all
participants receive 0 endowment with a probability equal to risk (r), and will
keep their endowment with probability 1-r. This means that each group must have at least
M Cs for the collective target to be achieved.

	Parameters

	
	endowment (float [https://docs.python.org/3/library/functions.html#float]) – The initial endowment (b) received by all participants

	cost (float [https://docs.python.org/3/library/functions.html#float]) – The fraction of the endowment that Cooperators contribute to the public good.
This value must be in the interval [0, 1]

	risk (float [https://docs.python.org/3/library/functions.html#float]) – The risk that all members of the group will lose their remaining endowment if the
collective target is not achieved.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the group (N)

	min_nb_cooperators (int [https://docs.python.org/3/library/functions.html#int]) – The minimum number of cooperators (M) required to reach the collective target.
In other words, the collective target is reached if the collective effort is
at least Mcb. This value must be in the discrete interval [[0, N]].

See also

egttools.games.CRDGame, egttools.games.CRDGameTU

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.CRDGameTU) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.CRDGameTU, player_strategy: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], population_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Calculates the fitness of a strategy given a population state.

	Parameters

	
	player_type (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy whose fitness will be calculated.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population (Z).

	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A vector containing the counts of each strategy in the population.

	Returns

	The fitness of the strategy in the current population state.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_group_achievement(self: egttools.numerical.numerical.games.CRDGameTU, population_size: int [https://docs.python.org/3/library/functions.html#int], stationary_distribution: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	calculates the group achievement for a given stationary distribution.

	
calculate_payoffs(self: egttools.numerical.numerical.games.CRDGameTU) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Calculates the payoffs of every strategy in each possible group composition.

	Returns

	A matrix containing the payoff of each strategy in every possible group composition.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
calculate_polarization(self: egttools.numerical.numerical.games.CRDGameTU, population_size: int [https://docs.python.org/3/library/functions.html#int], population_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[3, 1]]

	calculates the fraction of players that contribute above, below or equal to the fair contribution (E/2)in a give population state.

	
calculate_polarization_success(self: egttools.numerical.numerical.games.CRDGameTU, population_size: int [https://docs.python.org/3/library/functions.html#int], population_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[3, 1]]

	calculates the fraction of players (from successful groups)) that contribute above, below or equal to the fair contribution (E/2)in a give population state.

	
calculate_population_group_achievement(self: egttools.numerical.numerical.games.CRDGameTU, population_size: int [https://docs.python.org/3/library/functions.html#int], population_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	calculates the group achievement in the population at a given state.

	
nb_strategies(self: egttools.numerical.numerical.games.CRDGameTU) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies which are playing the game.

	
payoff(self: egttools.numerical.numerical.games.CRDGameTU, strategy: int, strategy pair: List[int]) → float [https://docs.python.org/3/library/functions.html#float]

	returns the payoff of a strategy given a group composition.

	
payoffs(self: egttools.numerical.numerical.games.CRDGameTU) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	returns the expected payoffs of each strategy vs each possible game state

	
play(self: egttools.numerical.numerical.games.CRDGameTU, arg0: List[int [https://docs.python.org/3/library/functions.html#int]], arg1: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Plays the One-shop CRD and update the game_payoffs given the group_composition.

We always assume that strategy 0 is D and strategy 1 is C.

The payoffs of Defectors and Cooperators are described by the following equations:

\[\begin{align}\begin{aligned}\Pi_{D}(k) = b\{\theta(k-M)+ (1-r)[1 - \theta(k-M)]\}\\\Pi_{C}(k) = \Pi_{D}(k) - cb\\\text{where } \theta(x) = 0 \text{if } x < 0 \text{ and 1 otherwise.}\end{aligned}\end{align} \]

	Parameters

	
	group_composition (Union[List[int [https://docs.python.org/3/library/functions.html#int]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A list or array containing the counts of how many members of each strategy are
present in the group.

	game_payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A vector in which the payoffs of the game will be stored.

	
save_payoffs(self: egttools.numerical.numerical.games.CRDGameTU, arg0: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Saves the payoff matrix in a txt file.

	
type(self: egttools.numerical.numerical.games.CRDGameTU) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
property endowment

	Initial endowment for all players.

	
property group_size

	Size of the group which will play the game.

	
property min_rounds

	Minimum number of rounds of the game.

	
property nb_states

	Number of combinations of 2 strategies that can be matched in the game.

	
property risk

	Probability that all players will lose their remaining endowment if the target si not achieved.

	
property strategies

	A list with pointers to the strategies that are playing the game.

	
property target

	Collective target which needs to be achieved by the group.

egttools.games.CommonPoolResourceDilemma

	
class CommonPoolResourceDilemma(group_size, a, b, min_e, cost, nb_strategies=3, strategies=None)

	Bases: AbstractNPlayerGame

Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	calculate_total_extraction

	

	conditional_low

	

	extraction

	

	extraction_strategy

	

	group_size

	Size of the group.

	high_extraction

	

	low_extraction

	

	min_extraction

	

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	update_payoff

	update an entry of the payoff matrix

	
__init__(group_size, a, b, min_e, cost, nb_strategies=3, strategies=None)

	Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs()

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
calculate_total_extraction(group_composition)

	

	
conditional_low(x_total)

	

	
extraction(x, x_total)

	

	
extraction_strategy(strategy_id)

	

	
group_size(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
high_extraction()

	

	
low_extraction()

	

	
min_extraction()

	

	
nb_group_configurations(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(group_composition, game_payoffs)

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
save_payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame, file_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	
type(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

	
update_payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], group_configuration_index: int [https://docs.python.org/3/library/functions.html#int], value: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	update an entry of the payoff matrix

egttools.games.CommonPoolResourceDilemmaCommitment

	
class CommonPoolResourceDilemmaCommitment(group_size, a, b, cost, fine, strategies)

	Bases: AbstractNPlayerGame

Common Pool resource game with commitment, but the threshold is set as another strategy
:type group_size: int [https://docs.python.org/3/library/functions.html#int]
:param group_size: Size of the group playing the game.
:type group_size: int
:param a and b: Both a and b are the parameters of the game, if a>>b, then it’s attractive to invest in the CPR
:type a and b: flaot
:type cost: float [https://docs.python.org/3/library/functions.html#float]
:param cost: cost of making the commitment for commitment proposing strategy
:type fine: float [https://docs.python.org/3/library/functions.html#float]
:param fine: fine for defection when accepting the commitment
:type fine: float
:type strategies: List [https://docs.python.org/3/library/typing.html#typing.List][AbstractCPRStrategy]
:param strategies: List of strategies which will play the game
:type strategies: Lit[int]

Methods

	add_group_extraction

	

	calculate_expected_consumption

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	calculate_total_extraction

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	check_if_commitment_validated

	
	rtype

	None [https://docs.python.org/3/library/constants.html#None]

	get_nb_committed

	
	rtype

	int [https://docs.python.org/3/library/functions.html#int]

	group_size

	Size of the group.

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	update_payoff

	update an entry of the payoff matrix

	
__init__(group_size, a, b, cost, fine, strategies)

	Common Pool resource game with commitment, but the threshold is set as another strategy
:type group_size: int [https://docs.python.org/3/library/functions.html#int]
:param group_size: Size of the group playing the game.
:type group_size: int
:param a and b: Both a and b are the parameters of the game, if a>>b, then it’s attractive to invest in the CPR
:type a and b: flaot
:type cost: float [https://docs.python.org/3/library/functions.html#float]
:param cost: cost of making the commitment for commitment proposing strategy
:type fine: float [https://docs.python.org/3/library/functions.html#float]
:param fine: fine for defection when accepting the commitment
:type fine: float
:type strategies: List [https://docs.python.org/3/library/typing.html#typing.List][AbstractCPRStrategy]
:param strategies: List of strategies which will play the game
:type strategies: Lit[int]

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
add_group_extraction(group_extraction, group_composition)

	

	
calculate_expected_consumption(population_state)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs()

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
calculate_total_extraction(commitment_accepted, group_composition)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
check_if_commitment_validated(nb_committed, group_composition, commitment_accepted)

	
	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
get_nb_committed(group_composition)

	
	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
group_size(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
nb_group_configurations(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(group_composition, game_payoffs)

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
save_payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame, file_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	
type(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

	
update_payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], group_configuration_index: int [https://docs.python.org/3/library/functions.html#int], value: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	update an entry of the payoff matrix

egttools.games.InformalRiskGame

	
class InformalRiskGame(group_size, cost, multiplying_factor, strategies)

	Bases: AbstractGame

Game of informal risk sharing.

This game has been taken from the model introduced in

`Santos, F. P., Pacheco, J. M., Santos, F. C., & Levin, S. A. (2021).
Dynamics of informal risk sharing in collective index insurance.
Nature Sustainability. https://doi.org/10.1038/s41893-020-00667-2`

to investigate the dynamics of a collective index insurance with informal risk sharing.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) –

	cost (float [https://docs.python.org/3/library/functions.html#float]) –

	multiplying_factor (float [https://docs.python.org/3/library/functions.html#float]) –

	strategies (List [https://docs.python.org/3/library/typing.html#typing.List]) –

Methods

	calculate_fitness

	Calculates the Fitness of an strategy for a given population state.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	payoff

	Returns the payoff of a strategy given a group composition.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

Attributes

	nb_strategies

	Number of different strategies playing the game.

	payoffs

	Returns the payoff matrix of the game.

	type

	returns the type of game.

	
__init__(group_size, cost, multiplying_factor, strategies)

	Game of informal risk sharing.

This game has been taken from the model introduced in

`Santos, F. P., Pacheco, J. M., Santos, F. C., & Levin, S. A. (2021).
Dynamics of informal risk sharing in collective index insurance.
Nature Sustainability. https://doi.org/10.1038/s41893-020-00667-2`

to investigate the dynamics of a collective index insurance with informal risk sharing.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) –

	cost (float [https://docs.python.org/3/library/functions.html#float]) –

	multiplying_factor (float [https://docs.python.org/3/library/functions.html#float]) –

	strategies (List [https://docs.python.org/3/library/typing.html#typing.List]) –

	
__new__(**kwargs)

	

	
__str__()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
calculate_fitness(player_strategy, pop_size, population_state)

	Calculates the Fitness of an strategy for a given population state.

The calculation is done by computing the expected payoff over all possible group combinations
for the given population state: $ fitness = sum_{states} payoff * P(state) $
:type player_strategy: int [https://docs.python.org/3/library/functions.html#int]
:param player_strategy:
:type player_strategy: index of the strategy
:type pop_size: int [https://docs.python.org/3/library/functions.html#int]
:param pop_size: (might be eliminated in the future)
:type pop_size: size of the population - Only necessary for compatibility with the C++ implementation
:type population_state: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]
:param population_state:
:type population_state: vector with the population state (the number of players adopting each strategy)

	Return type

	The fitness of the population.

	
calculate_payoffs()

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
payoff(strategy, group_composition)

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
play(group_composiiton, game_payoffs)

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
save_payoffs(file_name)

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
property nb_strategies: int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property payoffs: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property type: str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

egttools.games.Matrix2PlayerGameHolder

	
class Matrix2PlayerGameHolder(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]])

	Bases: AbstractGame

Holder class for 2-player games for which the expected payoff between strategies has already been calculated.

This class is useful to store the matrix of expected payoffs between strategies
in an 2-player game and keep the methods to calculate the fitness between these strategies.

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies in the game

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – matrix of shape (nb_strategies, nb_strategies) containing the payoffs
of each strategy against any other strategy.

See also

egttools.games.Matrix2NlayerGameHolder, egttools.games.AbstractGame

Methods

	calculate_fitness

	Calculates the fitness of a strategy given a population state.

	calculate_payoffs

	Calculates the payoffs of every strategy in each possible group composition.

	nb_strategies

	Number of different strategies which are playing the game.

	payoff

	returns the payoff of a strategy given a group composition.

	payoffs

	returns the expected payoffs of each strategy vs each possible game state

	play

	Plays the One-shop CRD and update the game_payoffs given the group_composition.

	save_payoffs

	Saves the payoff matrix in a txt file.

	type

	

	update_payoff_matrix

	updates the values of the payoff matrix.

	
__init__(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]) → None [https://docs.python.org/3/library/constants.html#None]

	Holder class for 2-player games for which the expected payoff between strategies has already been calculated.

This class is useful to store the matrix of expected payoffs between strategies
in an 2-player game and keep the methods to calculate the fitness between these strategies.

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies in the game

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – matrix of shape (nb_strategies, nb_strategies) containing the payoffs
of each strategy against any other strategy.

See also

egttools.games.Matrix2NlayerGameHolder, egttools.games.AbstractGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder, player_strategy: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], population_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Calculates the fitness of a strategy given a population state.

	Parameters

	
	player_type (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy whose fitness will be calculated.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population (Z).

	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A vector containing the counts of each strategy in the population.

	Returns

	The fitness of the strategy in the current population state.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Calculates the payoffs of every strategy in each possible group composition.

	Returns

	A matrix containing the payoff of each strategy in every possible group composition.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
nb_strategies(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies which are playing the game.

	
payoff(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder, strategy: int, strategy pair: List[int]) → float [https://docs.python.org/3/library/functions.html#float]

	returns the payoff of a strategy given a group composition.

	
payoffs(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	returns the expected payoffs of each strategy vs each possible game state

	
play(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder, arg0: List[int [https://docs.python.org/3/library/functions.html#int]], arg1: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Plays the One-shop CRD and update the game_payoffs given the group_composition.

We always assume that strategy 0 is D and strategy 1 is C.

The payoffs of Defectors and Cooperators are described by the following equations:

\[\begin{align}\begin{aligned}\Pi_{D}(k) = b\{\theta(k-M)+ (1-r)[1 - \theta(k-M)]\}\\\Pi_{C}(k) = \Pi_{D}(k) - cb\\\text{where } \theta(x) = 0 \text{if } x < 0 \text{ and 1 otherwise.}\end{aligned}\end{align} \]

	Parameters

	
	group_composition (Union[List[int [https://docs.python.org/3/library/functions.html#int]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A list or array containing the counts of how many members of each strategy are
present in the group.

	game_payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A vector in which the payoffs of the game will be stored.

	
save_payoffs(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder, arg0: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Saves the payoff matrix in a txt file.

	
type(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
update_payoff_matrix(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder, payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]) → None [https://docs.python.org/3/library/constants.html#None]

	updates the values of the payoff matrix.

egttools.games.MatrixNPlayerGameHolder

	
class MatrixNPlayerGameHolder(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int], payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]])

	Bases: AbstractGame

Holder class for N-player games for which the expected payoff between strategies has already been calculated.

This class is useful to store the matrix of expected payoffs between strategies
in an N-player game and keep the methods to calculate the fitness between these strategies.

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies in the game

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – matrix of shape (nb_strategies, nb_group_configurations) containing the payoffs
of each strategy against any other strategy.

See also

egttools.games.Matrix2PlayerGameHolder, egttools.games.AbstractGame

Methods

	calculate_fitness

	Calculates the fitness of a strategy given a population state.

	calculate_payoffs

	Calculates the payoffs of every strategy in each possible group composition.

	group_size

	Size of the group.

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies which are playing the game.

	payoff

	returns the payoff of a strategy given a group composition.

	payoffs

	returns the expected payoffs of each strategy vs each possible game state

	play

	Plays the One-shop CRD and update the game_payoffs given the group_composition.

	save_payoffs

	Saves the payoff matrix in a txt file.

	type

	

	update_payoff_matrix

	updates the values of the payoff matrix.

	
__init__(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int], payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]) → None [https://docs.python.org/3/library/constants.html#None]

	Holder class for N-player games for which the expected payoff between strategies has already been calculated.

This class is useful to store the matrix of expected payoffs between strategies
in an N-player game and keep the methods to calculate the fitness between these strategies.

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies in the game

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – matrix of shape (nb_strategies, nb_group_configurations) containing the payoffs
of each strategy against any other strategy.

See also

egttools.games.Matrix2PlayerGameHolder, egttools.games.AbstractGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder, player_strategy: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], population_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Calculates the fitness of a strategy given a population state.

	Parameters

	
	player_type (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy whose fitness will be calculated.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population (Z).

	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A vector containing the counts of each strategy in the population.

	Returns

	The fitness of the strategy in the current population state.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Calculates the payoffs of every strategy in each possible group composition.

	Returns

	A matrix containing the payoff of each strategy in every possible group composition.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
group_size(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
nb_group_configurations(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies which are playing the game.

	
payoff(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder, strategy: int, strategy pair: List[int]) → float [https://docs.python.org/3/library/functions.html#float]

	returns the payoff of a strategy given a group composition.

	
payoffs(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	returns the expected payoffs of each strategy vs each possible game state

	
play(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder, arg0: List[int [https://docs.python.org/3/library/functions.html#int]], arg1: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Plays the One-shop CRD and update the game_payoffs given the group_composition.

We always assume that strategy 0 is D and strategy 1 is C.

The payoffs of Defectors and Cooperators are described by the following equations:

\[\begin{align}\begin{aligned}\Pi_{D}(k) = b\{\theta(k-M)+ (1-r)[1 - \theta(k-M)]\}\\\Pi_{C}(k) = \Pi_{D}(k) - cb\\\text{where } \theta(x) = 0 \text{if } x < 0 \text{ and 1 otherwise.}\end{aligned}\end{align} \]

	Parameters

	
	group_composition (Union[List[int [https://docs.python.org/3/library/functions.html#int]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A list or array containing the counts of how many members of each strategy are
present in the group.

	game_payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A vector in which the payoffs of the game will be stored.

	
save_payoffs(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder, arg0: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Saves the payoff matrix in a txt file.

	
type(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
update_payoff_matrix(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder, payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]) → None [https://docs.python.org/3/library/constants.html#None]

	updates the values of the payoff matrix.

egttools.games.NPlayerStagHunt

	
class NPlayerStagHunt(self: egttools.numerical.numerical.games.AbstractNPlayerGame, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int])

	Bases: AbstractNPlayerGame

This game is based on the article
Pacheco et al., ‘Evolutionary Dynamics of Collective Action in N -Person Stag Hunt Dilemmas’.

Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	group_size

	Size of the group.

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Calculate the payoff of each strategy inside the group.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	update_payoff

	update an entry of the payoff matrix

	
__init__(self: egttools.numerical.numerical.games.AbstractNPlayerGame, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

	
__new__(**kwargs)

	

	
__str__()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs()

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
group_size(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
nb_group_configurations(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(group_composition, game_payoffs)

	Calculate the payoff of each strategy inside the group.

$Pi_{D}(k) = (kFc) heta(k-M)$
$Pi_{C}(k) = Pi_{D}(k) - c$

	Parameters

	
	group_composition (Union[List[int [https://docs.python.org/3/library/functions.html#int]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – counts of each strategy inside the group.

	game_payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – container for the payoffs of each strategy

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
save_payoffs(file_name)

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
type()

	returns the type of game.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
update_payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], group_configuration_index: int [https://docs.python.org/3/library/functions.html#int], value: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	update an entry of the payoff matrix

egttools.games.NormalFormGame

	
class NormalFormGame(*args, **kwargs)

	Bases: AbstractGame

Overloaded function.

	__init__(self: egttools.numerical.numerical.games.NormalFormGame, nb_rounds: int, payoff_matrix: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous]) -> None

Normal Form Game. This constructor assumes that there are only two possible strategies and two possible actions.

This class will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	nb_roundsint
	Number of rounds of the game.

	payoff_matrixnumpy.ndarray[numpy.float64[m, m]]
	A payoff matrix of shape (nb_actions, nb_actions).

egttools.games.AbstractGame,
egttools.games.AbstractNPlayerGame,
egttools.games.CRDGame,
egttools.games.CRDGameTU,
egttools.behaviors.NormalForm.TwoActions

	__init__(self: egttools.numerical.numerical.games.NormalFormGame, nb_rounds: int, payoff_matrix: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], strategies: list) -> None

Normal Form Game.

This constructor allows you to define any number of strategies
by passing a list of pointers to them. All strategies must by of type AbstractNFGStrategy *.

	nb_roundsint
	Number of rounds of the game.

	payoff_matrixnumpy.ndarray[float]
	A payoff matrix of shape (nb_actions, nb_actions).

	strategiesList[egttools.behaviors.AbstractNFGStrategy]
	A list containing references of AbstractNFGStrategy strategies (or child classes).

egttools.games.AbstractGame

Methods

	calculate_cooperation_rate

	Calculates the rate/level of cooperation in the population at a given population state.

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	expected_payoffs

	returns the expected payoffs of each strategy vs another

	nb_strategies

	Number of different strategies which are playing the game.

	payoff

	Returns the payoff of a strategy given a strategy pair.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	

Attributes

	nb_rounds

	Number of rounds of the game.

	nb_states

	Number of combinations of 2 strategies that can be matched in the game.

	strategies

	A list with pointers to the strategies that are playing the game.

	
__init__(*args, **kwargs)

	Overloaded function.

	__init__(self: egttools.numerical.numerical.games.NormalFormGame, nb_rounds: int, payoff_matrix: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous]) -> None

Normal Form Game. This constructor assumes that there are only two possible strategies and two possible actions.

This class will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	nb_roundsint
	Number of rounds of the game.

	payoff_matrixnumpy.ndarray[numpy.float64[m, m]]
	A payoff matrix of shape (nb_actions, nb_actions).

egttools.games.AbstractGame,
egttools.games.AbstractNPlayerGame,
egttools.games.CRDGame,
egttools.games.CRDGameTU,
egttools.behaviors.NormalForm.TwoActions

	__init__(self: egttools.numerical.numerical.games.NormalFormGame, nb_rounds: int, payoff_matrix: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], strategies: list) -> None

Normal Form Game.

This constructor allows you to define any number of strategies
by passing a list of pointers to them. All strategies must by of type AbstractNFGStrategy *.

	nb_roundsint
	Number of rounds of the game.

	payoff_matrixnumpy.ndarray[float]
	A payoff matrix of shape (nb_actions, nb_actions).

	strategiesList[egttools.behaviors.AbstractNFGStrategy]
	A list containing references of AbstractNFGStrategy strategies (or child classes).

egttools.games.AbstractGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.NormalFormGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_cooperation_rate(self: egttools.numerical.numerical.games.NormalFormGame, population_size: int [https://docs.python.org/3/library/functions.html#int], population_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Calculates the rate/level of cooperation in the population at a given population state.

	Parameters

	
	population_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy in the population.
The current state of the population.

	Returns

	The level of cooperation at the population_state.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_fitness(self: egttools.numerical.numerical.games.NormalFormGame, player_strategy: int [https://docs.python.org/3/library/functions.html#int], population_size: int [https://docs.python.org/3/library/functions.html#int], population_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	player_type (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs(self: egttools.numerical.numerical.games.NormalFormGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

This method also updates a matrix that stores the cooperation level of each strategy
against any other.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
expected_payoffs(self: egttools.numerical.numerical.games.NormalFormGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	returns the expected payoffs of each strategy vs another

	
nb_strategies(self: egttools.numerical.numerical.games.NormalFormGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies which are playing the game.

	
payoff(self: egttools.numerical.numerical.games.NormalFormGame, strategy: int [https://docs.python.org/3/library/functions.html#int], strategy_pair: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a strategy pair.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	strategy_pair (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.NormalFormGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(self: egttools.numerical.numerical.games.NormalFormGame, group_composition: List[int [https://docs.python.org/3/library/functions.html#int]], game_payoffs: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	
save_payoffs(self: egttools.numerical.numerical.games.NormalFormGame, arg0: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	
type(self: egttools.numerical.numerical.games.NormalFormGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
property nb_rounds

	Number of rounds of the game.

	
property nb_states

	Number of combinations of 2 strategies that can be matched in the game.

	
property strategies

	A list with pointers to the strategies that are playing the game.

egttools.games.OneShotCRD

	
class OneShotCRD(self: egttools.numerical.numerical.games.OneShotCRD, endowment: float [https://docs.python.org/3/library/functions.html#float], cost: float [https://docs.python.org/3/library/functions.html#float], risk: float [https://docs.python.org/3/library/functions.html#float], group_size: int [https://docs.python.org/3/library/functions.html#int], min_nb_cooperators: int [https://docs.python.org/3/library/functions.html#int])

	Bases: AbstractGame

One-Shot Collective Risk Dilemma (CRD).

The full description of the One-shot CRD can be found in:
Santos and Pacheco, ‘Risk of Collective Failure Provides an Escape from the Tragedy of the Commons’.

	Parameters

	
	endowment (float [https://docs.python.org/3/library/functions.html#float]) – Initial endowment for all players. This is parameter b in the mentioned article.

	cost (float [https://docs.python.org/3/library/functions.html#float]) – Cost of cooperation.

	risk (float [https://docs.python.org/3/library/functions.html#float]) – The probability that all members will lose their remaining endowment if the threshold is not achieved.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group that will play the CRD.

	min_nb_cooperators (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of cooperators required to avoid the risk of collective loss.

See also

egttools.games.AbstractGame, egttools.games.NormalFormGame

Methods

	calculate_fitness

	calculates the fitness of an individual of a given strategy given a population state.It always assumes that the population state does not contain the current individual

	calculate_group_achievement

	calculates the group achievement for a given stationary distribution.

	calculate_payoffs

	updates the internal payoff and coop_level matrices by calculating the payoff of each strategy given any possible strategy pair

	calculate_population_group_achievement

	calculates the group achievement in the population at a given state.

	nb_strategies

	Number of different strategies which are playing the game.

	payoff

	returns the payoff of a strategy given a group composition.

	payoffs

	returns the expected payoffs of each strategy vs each possible game state

	play

	

	save_payoffs

	Saves the payoff matrix in a txt file.

	type

	

Attributes

	cost

	Cost of cooperation.

	endowment

	Initial endowment for all players.

	group_achievement_per_group

	

	group_size

	Size of the group which will play the game.

	min_nb_cooperators

	Minimum number of cooperators to reach the target.

	nb_states

	Number of combinations of Cs and Ds that can be matched in the game.

	risk

	Probability that all players will lose their remaining endowment if the target si not achieved.

	
__init__(self: egttools.numerical.numerical.games.OneShotCRD, endowment: float [https://docs.python.org/3/library/functions.html#float], cost: float [https://docs.python.org/3/library/functions.html#float], risk: float [https://docs.python.org/3/library/functions.html#float], group_size: int [https://docs.python.org/3/library/functions.html#int], min_nb_cooperators: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	One-Shot Collective Risk Dilemma (CRD).

The full description of the One-shot CRD can be found in:
Santos and Pacheco, ‘Risk of Collective Failure Provides an Escape from the Tragedy of the Commons’.

	Parameters

	
	endowment (float [https://docs.python.org/3/library/functions.html#float]) – Initial endowment for all players. This is parameter b in the mentioned article.

	cost (float [https://docs.python.org/3/library/functions.html#float]) – Cost of cooperation.

	risk (float [https://docs.python.org/3/library/functions.html#float]) – The probability that all members will lose their remaining endowment if the threshold is not achieved.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group that will play the CRD.

	min_nb_cooperators (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of cooperators required to avoid the risk of collective loss.

See also

egttools.games.AbstractGame, egttools.games.NormalFormGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.OneShotCRD) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.OneShotCRD, player_strategy: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], population_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	calculates the fitness of an individual of a given strategy given a population state.It always assumes that the population state does not contain the current individual

	
calculate_group_achievement(self: egttools.numerical.numerical.games.OneShotCRD, population_size: int [https://docs.python.org/3/library/functions.html#int], stationary_distribution: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	calculates the group achievement for a given stationary distribution.

	
calculate_payoffs(self: egttools.numerical.numerical.games.OneShotCRD) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	updates the internal payoff and coop_level matrices by calculating the payoff of each strategy given any possible strategy pair

	
calculate_population_group_achievement(self: egttools.numerical.numerical.games.OneShotCRD, population_size: int [https://docs.python.org/3/library/functions.html#int], population_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	calculates the group achievement in the population at a given state.

	
nb_strategies(self: egttools.numerical.numerical.games.OneShotCRD) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies which are playing the game.

	
payoff(self: egttools.numerical.numerical.games.OneShotCRD, strategy: int, strategy pair: List[int]) → float [https://docs.python.org/3/library/functions.html#float]

	returns the payoff of a strategy given a group composition.

	
payoffs(self: egttools.numerical.numerical.games.OneShotCRD) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	returns the expected payoffs of each strategy vs each possible game state

	
play(self: egttools.numerical.numerical.games.OneShotCRD, arg0: List[int [https://docs.python.org/3/library/functions.html#int]], arg1: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
save_payoffs(self: egttools.numerical.numerical.games.OneShotCRD, arg0: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Saves the payoff matrix in a txt file.

	
type(self: egttools.numerical.numerical.games.OneShotCRD) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
property cost

	Cost of cooperation.

	
property endowment

	Initial endowment for all players.

	
property group_achievement_per_group

	

	
property group_size

	Size of the group which will play the game.

	
property min_nb_cooperators

	Minimum number of cooperators to reach the target.

	
property nb_states

	Number of combinations of Cs and Ds that can be matched in the game.

	
property risk

	Probability that all players will lose their remaining endowment if the target si not achieved.

egttools.games.PGG

	
class PGG(group_size, cost, multiplying_factor, strategies)

	Bases: AbstractNPlayerGame

Classical Public Goods game with only 2 possible contributions (o or cost).

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group playing the game.

	cost (float [https://docs.python.org/3/library/functions.html#float]) – Cost of cooperation.

	multiplying_factor (float [https://docs.python.org/3/library/functions.html#float]) – The sum of contributions to the public good is multiplied by this factor before being divided equally
among all players.

	strategies (List[egttools.behaviors.pgg_behaviors.PGGOneShotStrategy]) – A list of strategies that will play the game.

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	group_size

	Size of the group.

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	update_payoff

	update an entry of the payoff matrix

	
__init__(group_size, cost, multiplying_factor, strategies)

	Classical Public Goods game with only 2 possible contributions (o or cost).

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group playing the game.

	cost (float [https://docs.python.org/3/library/functions.html#float]) – Cost of cooperation.

	multiplying_factor (float [https://docs.python.org/3/library/functions.html#float]) – The sum of contributions to the public good is multiplied by this factor before being divided equally
among all players.

	strategies (List[egttools.behaviors.pgg_behaviors.PGGOneShotStrategy]) – A list of strategies that will play the game.

	
__new__(**kwargs)

	

	
__str__()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs()

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
group_size(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
nb_group_configurations(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(group_composition, game_payoffs)

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
save_payoffs(file_name)

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
type()

	returns the type of game.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
update_payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], group_configuration_index: int [https://docs.python.org/3/library/functions.html#int], value: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	update an entry of the payoff matrix

egttools.games.abstract_games

Functions

	abstractmethod

	A decorator indicating abstract methods.

	calculate_state

	This function converts a vector containing counts into an index.

	sample_simplex

	Transforms a state index into a vector.

Classes

	AbstractGame

	Abstract class which must be implemented by any new game.

	AbstractNPlayerGame

	Abstract N-Player Game.

	AbstractNPlayerGameExpectedPayoff

	This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its expected payoff given the population state.

	AbstractTwoPLayerGame

	This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its expected payoff given the population state.

egttools.games.abstract_games.abstractmethod

	
abstractmethod(funcobj)

	A decorator indicating abstract methods.

Requires that the metaclass is ABCMeta or derived from it. A
class that has a metaclass derived from ABCMeta cannot be
instantiated unless all of its abstract methods are overridden.
The abstract methods can be called using any of the normal
‘super’ call mechanisms. abstractmethod() may be used to declare
abstract methods for properties and descriptors.

Usage:

	class C(metaclass=ABCMeta):
	@abstractmethod
def my_abstract_method(self, …):

…

egttools.games.abstract_games.calculate_state

	
calculate_state()

	This function converts a vector containing counts into an index.

This method was copied from @Svalorzen.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum bin size (it can also be the population size).

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – The vector to convert from simplex coordinates to index.

	Returns

	The unique index in [0, egttools.calculate_nb_states(group_size, len(group_composition))
representing the n-dimensional simplex.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.sample_simplex, egttools.calculate_nb_states

This function converts a vector containing counts into an index.

This method was copied from @Svalorzen.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum bin size (it can also be the population size).

	group_composition (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]) – The vector to convert from simplex coordinates to index.

	Returns

	The unique index in [0, egttools.calculate_nb_states(group_size, len(group_composition))
representing the n-dimensional simplex.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.sample_simplex, egttools.calculate_nb_states

egttools.games.abstract_games.sample_simplex

	
sample_simplex(index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]

	Transforms a state index into a vector.

	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – State index.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies.

	Returns

	Vector with the sampled state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.calculate_nb_states

egttools.games.abstract_games.AbstractGame

	
class AbstractGame(self: egttools.numerical.numerical.games.AbstractGame)

	Bases: pybind11_object

Abstract class which must be implemented by any new game.

This class provides a common interface for Games, so that they can be passed to the methods
(both analytical and numerical) implemented in egttools.

You must implement the following methods:
- play(group_composition: List[int], game_payoffs: List[float]) -> None
- calculate_payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- calculate_fitness(strategy_index: int, pop_size: int, strategies: numpy.ndarray[numpy.uint64[m, 1]]) -> float
- __str__
- type() -> str
- payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- payoff(strategy: int, group_composition: List[int]) -> float
- nb_strategies() -> int
- save_payoffs(file_name: str) -> None

See also

egttools.games.AbstractNPlayerGame

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	
__init__(self: egttools.numerical.numerical.games.AbstractGame) → None [https://docs.python.org/3/library/constants.html#None]

	Abstract class which must be implemented by any new game.

This class provides a common interface for Games, so that they can be passed to the methods
(both analytical and numerical) implemented in egttools.

You must implement the following methods:
- play(group_composition: List[int], game_payoffs: List[float]) -> None
- calculate_payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- calculate_fitness(strategy_index: int, pop_size: int, strategies: numpy.ndarray[numpy.uint64[m, 1]]) -> float
- __str__
- type() -> str
- payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- payoff(strategy: int, group_composition: List[int]) -> float
- nb_strategies() -> int
- save_payoffs(file_name: str) -> None

See also

egttools.games.AbstractNPlayerGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.AbstractGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs(self: egttools.numerical.numerical.games.AbstractGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(self: egttools.numerical.numerical.games.AbstractGame, group_composition: List[int [https://docs.python.org/3/library/functions.html#int]], game_payoffs: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	
save_payoffs(self: egttools.numerical.numerical.games.AbstractGame, file_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	
type(self: egttools.numerical.numerical.games.AbstractGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

egttools.games.abstract_games.AbstractNPlayerGame

	
class AbstractNPlayerGame(self: egttools.numerical.numerical.games.AbstractNPlayerGame, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int])

	Bases: AbstractGame

Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	group_size

	Size of the group.

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	update_payoff

	update an entry of the payoff matrix

	
__init__(self: egttools.numerical.numerical.games.AbstractNPlayerGame, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
group_size(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
nb_group_configurations(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(self: egttools.numerical.numerical.games.AbstractNPlayerGame, group_composition: List[int [https://docs.python.org/3/library/functions.html#int]], game_payoffs: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	
save_payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame, file_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	
type(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

	
update_payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], group_configuration_index: int [https://docs.python.org/3/library/functions.html#int], value: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	update an entry of the payoff matrix

egttools.games.abstract_games.AbstractNPlayerGameExpectedPayoff

	
class AbstractNPlayerGameExpectedPayoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int])

	Bases: AbstractNPlayerGame

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

	It assumes that you have at least the following attributes:
	1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs() returns a numpy.ndarray and contain the payoff matrix of the game. This array
is of shape (self.nb_strategies(), self.nb_group_configurations()), where self.nb_group_configurations()
is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play which should define how the game assigns
payoffs to each strategy for a given game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	This method calculates the payoffs for each strategy in each possible group configuration.

	group_size

	Size of the group.

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	This method fills the game_payoffs container with the payoff of each strategy given the group_composition.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	update_payoff

	update an entry of the payoff matrix

	
__init__(self: egttools.numerical.numerical.games.AbstractNPlayerGame, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs()

	This method calculates the payoffs for each strategy in each possible group configuration. Thus, it must
fill the self.payoffs_ numpy.ndarray with these payoffs values. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration.

	Returns

	The payoff matrix of the game.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
group_size(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
nb_group_configurations(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
abstract play(group_composition, game_payoffs)

	This method fills the game_payoffs container with the payoff of each strategy given the group_composition.

Strategies not present in the group will receive 0 payoff by default.

	Parameters

	
	group_composition (Union[List[int [https://docs.python.org/3/library/functions.html#int]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A List or a numpy.ndarray containing the counts of each strategy in the group (e.g., for a game with 3
possible strategies and group size 4, the following List is possible [3, 0, 1]).

	game_payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A container for the payoffs that will be calculated. This avoids needing to create a new array at each
call and should speed up computation.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
save_payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame, file_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	
type(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

	
update_payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], group_configuration_index: int [https://docs.python.org/3/library/functions.html#int], value: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	update an entry of the payoff matrix

egttools.games.abstract_games.AbstractTwoPLayerGame

	
class AbstractTwoPLayerGame(nb_strategies)

	Bases: AbstractGame

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is 2 player and the fitness is calculated with this assumption!

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

	It assumes that you have at least the following attributes:
	1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, self.nb_strategies_).

For normal form games:
1. There is already a class called NormalFormGame available which you can use for these types of games. If
for any reason this does not cover your needs then:
2. If your game is normal form, but iterated, you should create another variable to contain the payoff matrix
for one round of the game, since self.payoffs_ will contain the expected payoffs over the several rounds
of the game.
3. If the game is one-shot and normal form, self.payoffs_ is the payoff matrix of the game, and you do not
need to do anything in calculate_payoffs besides calling this matrix.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

This class must be initialized with the total number of strategies
that will be used and the size of the group in which the game takes place.
This is required to calculate the number of group configurations and the correct
shape of the payoff matrix.

	Parameters

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

Methods

	calculate_fitness

	Calculates the Fitness of a strategy for a given population state.

	calculate_payoffs

	This method calculates the payoffs for each strategy in each possible group configuration.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	This method fills the game_payoffs container with the payoff of each strategy given the group_composition.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	
__init__(nb_strategies)

	This class must be initialized with the total number of strategies
that will be used and the size of the group in which the game takes place.
This is required to calculate the number of group configurations and the correct
shape of the payoff matrix.

	Parameters

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	
__new__(**kwargs)

	

	
__str__()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
calculate_fitness(player_strategy, pop_size, population_state)

	Calculates the Fitness of a strategy for a given population state.

The calculation is done by computing the expected payoff over all possible strategy matches.

	Parameters

	
	player_strategy (int [https://docs.python.org/3/library/functions.html#int]) – index of the strategy.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the population - Only necessary for compatibility with the C++ implementation
(might be eliminated in the future).

	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – vector with the population state (the number of players adopting each strategy).

	Returns

	The fitness of the population.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
abstract calculate_payoffs()

	This method calculates the payoffs for each strategy in each possible group configuration. Thus, it must
fill the self.payoffs_ numpy.ndarray with these payoffs values. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration.

	Returns

	The payoff matrix of the game.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
nb_strategies()

	Number of different strategies playing the game.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
payoff(strategy, group_composition)

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs()

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
abstract play(group_composition, game_payoffs)

	This method fills the game_payoffs container with the payoff of each strategy given the group_composition.

Strategies not present in the group will receive 0 payoff by default.

	Parameters

	
	group_composition (Union[List[int [https://docs.python.org/3/library/functions.html#int]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A List or a numpy.ndarray containing the counts of each strategy in the group (e.g., for a game with 3
possible strategies and group size 4, the following List is possible [3, 0, 1]).

	game_payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A container for the payoffs that will be calculated. This avoids needing to create a new array at each
call and should speed up computation.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
save_payoffs(file_name)

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
type()

	returns the type of game.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

egttools.games.informal_risk

Functions

	calculate_nb_states

	Calculates the number of states (combinations) of the members of a group in a subgroup.

	calculate_state

	This function converts a vector containing counts into an index.

	sample_simplex

	Transforms a state index into a vector.

Classes

	AbstractGame

	Abstract class which must be implemented by any new game.

	InformalRiskGame

	Game of informal risk sharing.

egttools.games.informal_risk.calculate_nb_states

	
calculate_nb_states(group_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → object [https://docs.python.org/3/library/functions.html#object]

	Calculates the number of states (combinations) of the members of a group in a subgroup.

It can be used to calculate the maximum number of states in a discrete simplex.

The implementation of this method follows the stars and bars algorithm (see Wikipedia).

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group (maximum number of players/elements that can adopt each possible strategy).

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies that can be assigned to players.

	Returns

	Number of states (possible combinations of strategies and players).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.numerical.calculate_state, egttools.numerical.sample_simplex

egttools.games.informal_risk.calculate_state

	
calculate_state()

	This function converts a vector containing counts into an index.

This method was copied from @Svalorzen.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum bin size (it can also be the population size).

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – The vector to convert from simplex coordinates to index.

	Returns

	The unique index in [0, egttools.calculate_nb_states(group_size, len(group_composition))
representing the n-dimensional simplex.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.sample_simplex, egttools.calculate_nb_states

This function converts a vector containing counts into an index.

This method was copied from @Svalorzen.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum bin size (it can also be the population size).

	group_composition (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]) – The vector to convert from simplex coordinates to index.

	Returns

	The unique index in [0, egttools.calculate_nb_states(group_size, len(group_composition))
representing the n-dimensional simplex.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.sample_simplex, egttools.calculate_nb_states

egttools.games.informal_risk.sample_simplex

	
sample_simplex(index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]

	Transforms a state index into a vector.

	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – State index.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies.

	Returns

	Vector with the sampled state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.calculate_nb_states

egttools.games.informal_risk.AbstractGame

	
class AbstractGame(self: egttools.numerical.numerical.games.AbstractGame)

	Bases: pybind11_object

Abstract class which must be implemented by any new game.

This class provides a common interface for Games, so that they can be passed to the methods
(both analytical and numerical) implemented in egttools.

You must implement the following methods:
- play(group_composition: List[int], game_payoffs: List[float]) -> None
- calculate_payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- calculate_fitness(strategy_index: int, pop_size: int, strategies: numpy.ndarray[numpy.uint64[m, 1]]) -> float
- __str__
- type() -> str
- payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- payoff(strategy: int, group_composition: List[int]) -> float
- nb_strategies() -> int
- save_payoffs(file_name: str) -> None

See also

egttools.games.AbstractNPlayerGame

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	
__init__(self: egttools.numerical.numerical.games.AbstractGame) → None [https://docs.python.org/3/library/constants.html#None]

	Abstract class which must be implemented by any new game.

This class provides a common interface for Games, so that they can be passed to the methods
(both analytical and numerical) implemented in egttools.

You must implement the following methods:
- play(group_composition: List[int], game_payoffs: List[float]) -> None
- calculate_payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- calculate_fitness(strategy_index: int, pop_size: int, strategies: numpy.ndarray[numpy.uint64[m, 1]]) -> float
- __str__
- type() -> str
- payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- payoff(strategy: int, group_composition: List[int]) -> float
- nb_strategies() -> int
- save_payoffs(file_name: str) -> None

See also

egttools.games.AbstractNPlayerGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.AbstractGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs(self: egttools.numerical.numerical.games.AbstractGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(self: egttools.numerical.numerical.games.AbstractGame, group_composition: List[int [https://docs.python.org/3/library/functions.html#int]], game_payoffs: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	
save_payoffs(self: egttools.numerical.numerical.games.AbstractGame, file_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	
type(self: egttools.numerical.numerical.games.AbstractGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

egttools.games.informal_risk.InformalRiskGame

	
class InformalRiskGame(group_size, cost, multiplying_factor, strategies)

	Bases: AbstractGame

Game of informal risk sharing.

This game has been taken from the model introduced in

`Santos, F. P., Pacheco, J. M., Santos, F. C., & Levin, S. A. (2021).
Dynamics of informal risk sharing in collective index insurance.
Nature Sustainability. https://doi.org/10.1038/s41893-020-00667-2`

to investigate the dynamics of a collective index insurance with informal risk sharing.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) –

	cost (float [https://docs.python.org/3/library/functions.html#float]) –

	multiplying_factor (float [https://docs.python.org/3/library/functions.html#float]) –

	strategies (List [https://docs.python.org/3/library/typing.html#typing.List]) –

Methods

	calculate_fitness

	Calculates the Fitness of an strategy for a given population state.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	payoff

	Returns the payoff of a strategy given a group composition.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

Attributes

	nb_strategies

	Number of different strategies playing the game.

	payoffs

	Returns the payoff matrix of the game.

	type

	returns the type of game.

	
__init__(group_size, cost, multiplying_factor, strategies)

	Game of informal risk sharing.

This game has been taken from the model introduced in

`Santos, F. P., Pacheco, J. M., Santos, F. C., & Levin, S. A. (2021).
Dynamics of informal risk sharing in collective index insurance.
Nature Sustainability. https://doi.org/10.1038/s41893-020-00667-2`

to investigate the dynamics of a collective index insurance with informal risk sharing.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) –

	cost (float [https://docs.python.org/3/library/functions.html#float]) –

	multiplying_factor (float [https://docs.python.org/3/library/functions.html#float]) –

	strategies (List [https://docs.python.org/3/library/typing.html#typing.List]) –

	
__new__(**kwargs)

	

	
__str__()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
calculate_fitness(player_strategy, pop_size, population_state)

	Calculates the Fitness of an strategy for a given population state.

The calculation is done by computing the expected payoff over all possible group combinations
for the given population state: $ fitness = sum_{states} payoff * P(state) $
:type player_strategy: int [https://docs.python.org/3/library/functions.html#int]
:param player_strategy:
:type player_strategy: index of the strategy
:type pop_size: int [https://docs.python.org/3/library/functions.html#int]
:param pop_size: (might be eliminated in the future)
:type pop_size: size of the population - Only necessary for compatibility with the C++ implementation
:type population_state: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]
:param population_state:
:type population_state: vector with the population state (the number of players adopting each strategy)

	Return type

	The fitness of the population.

	
calculate_payoffs()

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
payoff(strategy, group_composition)

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
play(group_composiiton, game_payoffs)

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
save_payoffs(file_name)

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
property nb_strategies: int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property payoffs: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property type: str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

egttools.games.nonlinear_games

Functions

	calculate_state

	This function converts a vector containing counts into an index.

	sample_simplex

	Transforms a state index into a vector.

Classes

	AbstractCPRStrategy

	

	AbstractNPlayerGame

	Abstract N-Player Game.

	CommonPoolResourceDilemma

	Abstract N-Player Game.

	CommonPoolResourceDilemmaCommitment

	Common Pool resource game with commitment, but the threshold is set as another strategy :type group_size: int [https://docs.python.org/3/library/functions.html#int] :param group_size: Size of the group playing the game.

	NPlayerStagHunt

	This game is based on the article Pacheco et al., ‘Evolutionary Dynamics of Collective Action in N -Person Stag Hunt Dilemmas’.

egttools.games.nonlinear_games.calculate_state

	
calculate_state()

	This function converts a vector containing counts into an index.

This method was copied from @Svalorzen.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum bin size (it can also be the population size).

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – The vector to convert from simplex coordinates to index.

	Returns

	The unique index in [0, egttools.calculate_nb_states(group_size, len(group_composition))
representing the n-dimensional simplex.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.sample_simplex, egttools.calculate_nb_states

This function converts a vector containing counts into an index.

This method was copied from @Svalorzen.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum bin size (it can also be the population size).

	group_composition (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]) – The vector to convert from simplex coordinates to index.

	Returns

	The unique index in [0, egttools.calculate_nb_states(group_size, len(group_composition))
representing the n-dimensional simplex.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.sample_simplex, egttools.calculate_nb_states

egttools.games.nonlinear_games.sample_simplex

	
sample_simplex(index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]

	Transforms a state index into a vector.

	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – State index.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies.

	Returns

	Vector with the sampled state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.calculate_nb_states

egttools.games.nonlinear_games.AbstractCPRStrategy

	
class AbstractCPRStrategy

	Bases: ABC

Methods

	get_extraction

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	get_payoff

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	is_commitment_validated

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	proposes_commitment

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	type

	
	rtype

	str [https://docs.python.org/3/library/stdtypes.html#str]

	would_like_to_commit

	
	rtype

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract get_extraction(a, b, group_size, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
abstract static get_payoff(a, b, extraction, group_extraction, fine=0, cost=0, commitment=False)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
abstract is_commitment_validated(nb_committers)

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract proposes_commitment()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract type()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract would_like_to_commit()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__abstractmethods__ = frozenset({'get_extraction', 'get_payoff', 'is_commitment_validated', 'proposes_commitment', 'type', 'would_like_to_commit'})

	

	
__annotations__ = {}

	

	
__slots__ = ()

	

egttools.games.nonlinear_games.AbstractNPlayerGame

	
class AbstractNPlayerGame(self: egttools.numerical.numerical.games.AbstractNPlayerGame, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int])

	Bases: AbstractGame

Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	group_size

	Size of the group.

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	update_payoff

	update an entry of the payoff matrix

	
__init__(self: egttools.numerical.numerical.games.AbstractNPlayerGame, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
group_size(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
nb_group_configurations(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(self: egttools.numerical.numerical.games.AbstractNPlayerGame, group_composition: List[int [https://docs.python.org/3/library/functions.html#int]], game_payoffs: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	
save_payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame, file_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	
type(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

	
update_payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], group_configuration_index: int [https://docs.python.org/3/library/functions.html#int], value: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	update an entry of the payoff matrix

egttools.games.nonlinear_games.CommonPoolResourceDilemma

	
class CommonPoolResourceDilemma(group_size, a, b, min_e, cost, nb_strategies=3, strategies=None)

	Bases: AbstractNPlayerGame

Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	calculate_total_extraction

	

	conditional_low

	

	extraction

	

	extraction_strategy

	

	group_size

	Size of the group.

	high_extraction

	

	low_extraction

	

	min_extraction

	

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	update_payoff

	update an entry of the payoff matrix

	
__init__(group_size, a, b, min_e, cost, nb_strategies=3, strategies=None)

	Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs()

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
calculate_total_extraction(group_composition)

	

	
conditional_low(x_total)

	

	
extraction(x, x_total)

	

	
extraction_strategy(strategy_id)

	

	
group_size(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
high_extraction()

	

	
low_extraction()

	

	
min_extraction()

	

	
nb_group_configurations(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(group_composition, game_payoffs)

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
save_payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame, file_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	
type(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

	
update_payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], group_configuration_index: int [https://docs.python.org/3/library/functions.html#int], value: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	update an entry of the payoff matrix

egttools.games.nonlinear_games.CommonPoolResourceDilemmaCommitment

	
class CommonPoolResourceDilemmaCommitment(group_size, a, b, cost, fine, strategies)

	Bases: AbstractNPlayerGame

Common Pool resource game with commitment, but the threshold is set as another strategy
:type group_size: int [https://docs.python.org/3/library/functions.html#int]
:param group_size: Size of the group playing the game.
:type group_size: int
:param a and b: Both a and b are the parameters of the game, if a>>b, then it’s attractive to invest in the CPR
:type a and b: flaot
:type cost: float [https://docs.python.org/3/library/functions.html#float]
:param cost: cost of making the commitment for commitment proposing strategy
:type fine: float [https://docs.python.org/3/library/functions.html#float]
:param fine: fine for defection when accepting the commitment
:type fine: float
:type strategies: List [https://docs.python.org/3/library/typing.html#typing.List][AbstractCPRStrategy]
:param strategies: List of strategies which will play the game
:type strategies: Lit[int]

Methods

	add_group_extraction

	

	calculate_expected_consumption

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	calculate_total_extraction

	
	rtype

	float [https://docs.python.org/3/library/functions.html#float]

	check_if_commitment_validated

	
	rtype

	None [https://docs.python.org/3/library/constants.html#None]

	get_nb_committed

	
	rtype

	int [https://docs.python.org/3/library/functions.html#int]

	group_size

	Size of the group.

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	update_payoff

	update an entry of the payoff matrix

	
__init__(group_size, a, b, cost, fine, strategies)

	Common Pool resource game with commitment, but the threshold is set as another strategy
:type group_size: int [https://docs.python.org/3/library/functions.html#int]
:param group_size: Size of the group playing the game.
:type group_size: int
:param a and b: Both a and b are the parameters of the game, if a>>b, then it’s attractive to invest in the CPR
:type a and b: flaot
:type cost: float [https://docs.python.org/3/library/functions.html#float]
:param cost: cost of making the commitment for commitment proposing strategy
:type fine: float [https://docs.python.org/3/library/functions.html#float]
:param fine: fine for defection when accepting the commitment
:type fine: float
:type strategies: List [https://docs.python.org/3/library/typing.html#typing.List][AbstractCPRStrategy]
:param strategies: List of strategies which will play the game
:type strategies: Lit[int]

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
add_group_extraction(group_extraction, group_composition)

	

	
calculate_expected_consumption(population_state)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs()

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
calculate_total_extraction(commitment_accepted, group_composition)

	
	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
check_if_commitment_validated(nb_committed, group_composition, commitment_accepted)

	
	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
get_nb_committed(group_composition)

	
	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
group_size(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
nb_group_configurations(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(group_composition, game_payoffs)

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
save_payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame, file_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	
type(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

	
update_payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], group_configuration_index: int [https://docs.python.org/3/library/functions.html#int], value: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	update an entry of the payoff matrix

egttools.games.nonlinear_games.NPlayerStagHunt

	
class NPlayerStagHunt(self: egttools.numerical.numerical.games.AbstractNPlayerGame, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int])

	Bases: AbstractNPlayerGame

This game is based on the article
Pacheco et al., ‘Evolutionary Dynamics of Collective Action in N -Person Stag Hunt Dilemmas’.

Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	group_size

	Size of the group.

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Calculate the payoff of each strategy inside the group.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	update_payoff

	update an entry of the payoff matrix

	
__init__(self: egttools.numerical.numerical.games.AbstractNPlayerGame, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

	
__new__(**kwargs)

	

	
__str__()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs()

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
group_size(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
nb_group_configurations(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(group_composition, game_payoffs)

	Calculate the payoff of each strategy inside the group.

$Pi_{D}(k) = (kFc) heta(k-M)$
$Pi_{C}(k) = Pi_{D}(k) - c$

	Parameters

	
	group_composition (Union[List[int [https://docs.python.org/3/library/functions.html#int]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – counts of each strategy inside the group.

	game_payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – container for the payoffs of each strategy

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
save_payoffs(file_name)

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
type()

	returns the type of game.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
update_payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], group_configuration_index: int [https://docs.python.org/3/library/functions.html#int], value: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	update an entry of the payoff matrix

egttools.games.opinion_game

Functions

	calculate_nb_states

	Calculates the number of states (combinations) of the members of a group in a subgroup.

	calculate_state

	This function converts a vector containing counts into an index.

	moment

	

	sample_simplex

	Transforms a state index into a vector.

	sigmoid

	

Classes

	AbstractNPlayerGame

	Abstract N-Player Game.

	OpinionGame

	Classical Public Goods game with only 2 possible contributions (o or cost).

egttools.games.opinion_game.calculate_nb_states

	
calculate_nb_states(group_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → object [https://docs.python.org/3/library/functions.html#object]

	Calculates the number of states (combinations) of the members of a group in a subgroup.

It can be used to calculate the maximum number of states in a discrete simplex.

The implementation of this method follows the stars and bars algorithm (see Wikipedia).

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group (maximum number of players/elements that can adopt each possible strategy).

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies that can be assigned to players.

	Returns

	Number of states (possible combinations of strategies and players).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.numerical.calculate_state, egttools.numerical.sample_simplex

egttools.games.opinion_game.calculate_state

	
calculate_state()

	This function converts a vector containing counts into an index.

This method was copied from @Svalorzen.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum bin size (it can also be the population size).

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – The vector to convert from simplex coordinates to index.

	Returns

	The unique index in [0, egttools.calculate_nb_states(group_size, len(group_composition))
representing the n-dimensional simplex.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.sample_simplex, egttools.calculate_nb_states

This function converts a vector containing counts into an index.

This method was copied from @Svalorzen.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum bin size (it can also be the population size).

	group_composition (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]) – The vector to convert from simplex coordinates to index.

	Returns

	The unique index in [0, egttools.calculate_nb_states(group_size, len(group_composition))
representing the n-dimensional simplex.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.sample_simplex, egttools.calculate_nb_states

egttools.games.opinion_game.moment

	
moment(x, counts, c, n)

	

egttools.games.opinion_game.sample_simplex

	
sample_simplex(index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]

	Transforms a state index into a vector.

	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – State index.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies.

	Returns

	Vector with the sampled state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.calculate_nb_states

egttools.games.opinion_game.sigmoid

	
sigmoid(x, temperature)

	

egttools.games.opinion_game.AbstractNPlayerGame

	
class AbstractNPlayerGame(self: egttools.numerical.numerical.games.AbstractNPlayerGame, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int])

	Bases: AbstractGame

Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	group_size

	Size of the group.

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	update_payoff

	update an entry of the payoff matrix

	
__init__(self: egttools.numerical.numerical.games.AbstractNPlayerGame, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
group_size(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
nb_group_configurations(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(self: egttools.numerical.numerical.games.AbstractNPlayerGame, group_composition: List[int [https://docs.python.org/3/library/functions.html#int]], game_payoffs: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	
save_payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame, file_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	
type(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

	
update_payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], group_configuration_index: int [https://docs.python.org/3/library/functions.html#int], value: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	update an entry of the payoff matrix

egttools.games.opinion_game.OpinionGame

	
class OpinionGame(group_size, peer_pressure_importance, peer_pressure_ratio, opinion_values)

	Bases: AbstractNPlayerGame

Classical Public Goods game with only 2 possible contributions (o or cost).

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group playing the game.

	peer_pressure_importance (float [https://docs.python.org/3/library/functions.html#float]) – Importance of being close in opinion to your group

	peer_pressure_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio at which the peer pressure is more important

	opinion_values (List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]) – Value of each opinion

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	group_size

	Size of the group.

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	update_payoff

	update an entry of the payoff matrix

	
__init__(group_size, peer_pressure_importance, peer_pressure_ratio, opinion_values)

	Classical Public Goods game with only 2 possible contributions (o or cost).

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group playing the game.

	peer_pressure_importance (float [https://docs.python.org/3/library/functions.html#float]) – Importance of being close in opinion to your group

	peer_pressure_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio at which the peer pressure is more important

	opinion_values (List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]) – Value of each opinion

	
__new__(**kwargs)

	

	
__str__()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs()

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
group_size(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
nb_group_configurations(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(group_composition, game_payoffs)

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
save_payoffs(file_name)

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
type()

	returns the type of game.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
update_payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], group_configuration_index: int [https://docs.python.org/3/library/functions.html#int], value: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	update an entry of the payoff matrix

egttools.games.pgg

Functions

	calculate_nb_states

	Calculates the number of states (combinations) of the members of a group in a subgroup.

	calculate_state

	This function converts a vector containing counts into an index.

	sample_simplex

	Transforms a state index into a vector.

Classes

	AbstractNPlayerGame

	Abstract N-Player Game.

	PGG

	Classical Public Goods game with only 2 possible contributions (o or cost).

	PGGOneShotStrategy

	

egttools.games.pgg.calculate_nb_states

	
calculate_nb_states(group_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → object [https://docs.python.org/3/library/functions.html#object]

	Calculates the number of states (combinations) of the members of a group in a subgroup.

It can be used to calculate the maximum number of states in a discrete simplex.

The implementation of this method follows the stars and bars algorithm (see Wikipedia).

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group (maximum number of players/elements that can adopt each possible strategy).

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies that can be assigned to players.

	Returns

	Number of states (possible combinations of strategies and players).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.numerical.calculate_state, egttools.numerical.sample_simplex

egttools.games.pgg.calculate_state

	
calculate_state()

	This function converts a vector containing counts into an index.

This method was copied from @Svalorzen.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum bin size (it can also be the population size).

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – The vector to convert from simplex coordinates to index.

	Returns

	The unique index in [0, egttools.calculate_nb_states(group_size, len(group_composition))
representing the n-dimensional simplex.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.sample_simplex, egttools.calculate_nb_states

This function converts a vector containing counts into an index.

This method was copied from @Svalorzen.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum bin size (it can also be the population size).

	group_composition (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]) – The vector to convert from simplex coordinates to index.

	Returns

	The unique index in [0, egttools.calculate_nb_states(group_size, len(group_composition))
representing the n-dimensional simplex.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.sample_simplex, egttools.calculate_nb_states

egttools.games.pgg.sample_simplex

	
sample_simplex(index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]

	Transforms a state index into a vector.

	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – State index.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies.

	Returns

	Vector with the sampled state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.calculate_nb_states

egttools.games.pgg.AbstractNPlayerGame

	
class AbstractNPlayerGame(self: egttools.numerical.numerical.games.AbstractNPlayerGame, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int])

	Bases: AbstractGame

Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	group_size

	Size of the group.

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	update_payoff

	update an entry of the payoff matrix

	
__init__(self: egttools.numerical.numerical.games.AbstractNPlayerGame, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Abstract N-Player Game.

This abstract Game class can be used in most scenarios where the fitness of a strategy is calculated as its
expected payoff given the population state.

It assumes that the game is N player, since the fitness of a strategy given a population state is calculated
as the expected payoff of that strategy over all possible group combinations in the given state.

Notes

It might be a good idea to overwrite the methods __str__, type, and save_payoffs to adapt to your
given game implementation

It assumes that you have at least the following attributes:
1. And an attribute self.nb_strategies_ which contains the number of strategies
that you are going to analyse for the given game.
2. self.payoffs_ which must be a numpy.ndarray and contain the payoff matrix of the game. This array
must be of shape (self.nb_strategies_, nb_group_configurations), where nb_group_configurations is the number
of possible combinations of strategies in the group. Thus, each row should give the (expected) payoff of the row
strategy when playing in a group with the column configuration. The payoff method provides an easy way to access
the payoffs for any group composition, by taking as arguments the index of the row strategy
and a List with the count of each possible strategy in the group.

You must still implement the methods play and calculate_payoffs which should define how the game assigns
payoffs to each strategy for each possible game context. In particular, calculate_payoffs should fill the
array self.payoffs_ with the correct values as explained above. We recommend that you run this method in
the __init__ (initialization of the object) since, these values must be set before passing the game object
to the numerical simulator (e.g., egttools.numerical.PairwiseComparisonNumerical).

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – total number of possible strategies.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group in which the game will take place.

See also

egttools.games.AbstractGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
group_size(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
nb_group_configurations(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(self: egttools.numerical.numerical.games.AbstractNPlayerGame, group_composition: List[int [https://docs.python.org/3/library/functions.html#int]], game_payoffs: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	
save_payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame, file_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	
type(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

	
update_payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], group_configuration_index: int [https://docs.python.org/3/library/functions.html#int], value: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	update an entry of the payoff matrix

egttools.games.pgg.PGG

	
class PGG(group_size, cost, multiplying_factor, strategies)

	Bases: AbstractNPlayerGame

Classical Public Goods game with only 2 possible contributions (o or cost).

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group playing the game.

	cost (float [https://docs.python.org/3/library/functions.html#float]) – Cost of cooperation.

	multiplying_factor (float [https://docs.python.org/3/library/functions.html#float]) – The sum of contributions to the public good is multiplied by this factor before being divided equally
among all players.

	strategies (List[egttools.behaviors.pgg_behaviors.PGGOneShotStrategy]) – A list of strategies that will play the game.

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	group_size

	Size of the group.

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	update_payoff

	update an entry of the payoff matrix

	
__init__(group_size, cost, multiplying_factor, strategies)

	Classical Public Goods game with only 2 possible contributions (o or cost).

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group playing the game.

	cost (float [https://docs.python.org/3/library/functions.html#float]) – Cost of cooperation.

	multiplying_factor (float [https://docs.python.org/3/library/functions.html#float]) – The sum of contributions to the public good is multiplied by this factor before being divided equally
among all players.

	strategies (List[egttools.behaviors.pgg_behaviors.PGGOneShotStrategy]) – A list of strategies that will play the game.

	
__new__(**kwargs)

	

	
__str__()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs()

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
group_size(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
nb_group_configurations(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractNPlayerGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(group_composition, game_payoffs)

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
save_payoffs(file_name)

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
type()

	returns the type of game.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
update_payoff(self: egttools.numerical.numerical.games.AbstractNPlayerGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], group_configuration_index: int [https://docs.python.org/3/library/functions.html#int], value: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	update an entry of the payoff matrix

egttools.games.pgg.PGGOneShotStrategy

	
class PGGOneShotStrategy(action)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Methods

	get_action

	
	rtype

	int [https://docs.python.org/3/library/functions.html#int]

Attributes

	type

	
	rtype

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__init__(action)

	

	
get_action()

	
	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property type: str [https://docs.python.org/3/library/stdtypes.html#str]

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

egttools.helpers

Set of helper functions that can be useful for obtaining analytical results, simulations or for plotting.

	egttools.helpers.vectorized

	Set of vectorized functions that can be used to apply these functions on large tensors.

egttools.helpers.vectorized

Set of vectorized functions that can be used to apply these functions on large tensors.

Functions

	barycentric_to_xy_coordinates

	Transforms barycentric into cartesian coordinates.

	cpp_vectorized_replicator_equation_n_player

	vectorized_replicator_equation_n_player(x1: numpy.ndarray[numpy.float64[m, n]], x2: numpy.ndarray[numpy.float64[m, n]], x3: numpy.ndarray[numpy.float64[m, n]], payoff_matrix: numpy.ndarray[numpy.float64[m, n]], group_size: int) -> Tuple[numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, n]]]

	replicator_equation_n_player

	Calculates the gradient of the replicator dynamics given the current population state.

	vectorized_barycentric_to_xy_coordinates

	Transform a tensor of barycentric coordinates to cartesian coordinates.

	vectorized_replicator_equation

	This function provides an easy way to calculate a matrix of gradients in a simplex in one go.

	vectorized_replicator_equation_n_player

	This function provides an easy way to calculate a matrix of gradients in a simplex in one go.

egttools.helpers.vectorized.barycentric_to_xy_coordinates

	
barycentric_to_xy_coordinates(point_barycentric, corners)

	Transforms barycentric into cartesian coordinates.

	Parameters

	
	point_barycentric (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array containing the 3 barycentric coordinates.

	corners (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An matrix containing the cartesian coordinates of the corners of the triangle that represents the 2-simplex.

	Returns

	An array containing the cartesian coordinates of the input point.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

egttools.helpers.vectorized.cpp_vectorized_replicator_equation_n_player

	
cpp_vectorized_replicator_equation_n_player()

	vectorized_replicator_equation_n_player(x1: numpy.ndarray[numpy.float64[m, n]], x2: numpy.ndarray[numpy.float64[m, n]], x3: numpy.ndarray[numpy.float64[m, n]], payoff_matrix: numpy.ndarray[numpy.float64[m, n]], group_size: int) -> Tuple[numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, n]]]

Calculates the gradient of the replicator dynamics given the current population state.

This function must only be used for 3 strategy populations! It provides a fast way
to compute the gradient of selection for a large number of population states.

You need to pass 3 matrices each containing the frequency of one strategy.

The combination of [x1[i,j], x2[i,j], x3[i,j]], gives the population state.

	Parameters

	
	x1 (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Matrix containing the first component of the frequencies

	x2 (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Matrix containing the second component of the frequencies

	x3 (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Matrix containing the third component of the frequencies

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A payoff matrix containing the payoff of each row strategy for each
possible group configuration, indicated by the column index.
The matrix must have shape (nb_strategies, nb_group_configurations).

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group

	Returns

	Returns 3 matrices containing the gradient of each strategy. Each Matrix
has the same shape as x1, x2 and x3.

	Return type

	Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

See also

egttools.analytical.replicator_equation, egttools.numerical.PairwiseComparison, egttools.numerical.PairwiseComparisonNumerical, egttools.analytical.StochDynamics, egttools.games.AbstractGame

egttools.helpers.vectorized.replicator_equation_n_player

	
replicator_equation_n_player(frequencies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]], payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]], group_size: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Calculates the gradient of the replicator dynamics given the current population state.

	Parameters

	
	frequencies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Vector of frequencies of each strategy in the population (it must have
shape=(nb_strategies,)

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A payoff matrix containing the payoff of each row strategy for each
possible group configuration, indicated by the column index.
The matrix must have shape (nb_strategies, nb_group_configurations).

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group

	Returns

	A vector with the gradient for each strategy. The vector has shape (nb_strategies,)

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.analytical.replicator_equation, egttools.numerical.PairwiseComparison, egttools.numerical.PairwiseComparisonNumerical, egttools.analytical.StochDynamics, egttools.games.AbstractGame

egttools.helpers.vectorized.vectorized_barycentric_to_xy_coordinates

	
vectorized_barycentric_to_xy_coordinates(barycentric_coordinates, corners)

	Transform a tensor of barycentric coordinates to cartesian coordinates.

	Parameters

	
	barycentric_coordinates (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][3,m,n]) – Expects a matrix in which the first dimension corresponds to the vector of 3-demensional barycentric
coordinates.

	corners (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][3,]) – The corners of the triangle

	Returns

	The tensor of cartesian coordinates.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][2,m,n]

egttools.helpers.vectorized.vectorized_replicator_equation

	
vectorized_replicator_equation(frequencies, payoffs)

	This function provides an easy way to calculate a matrix of gradients in a simplex in one go.

The input frequencies is expected to be a 3 dimensional tensor of shape (p, m, n) while the payoffs
matrix is expected to be of shape (p, p).

The main intention of this helper function is to facilitate
the calculation of the gradients that are required by the plot_gradients method of the
egttools.Simplex2D class.

	Parameters

	
	frequencies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][p,m,n]) – A 3 dimensional tensor containing the set of population frequencies for which the gradient should be
calculated.

	payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][p,p]) – A 2 dimensional matrix containing the payoffs of the game.

	Returns

	The gradients for each of the input frequencies.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][p,m,n]

egttools.helpers.vectorized.vectorized_replicator_equation_n_player

	
vectorized_replicator_equation_n_player(frequencies, payoffs, group_size)

	This function provides an easy way to calculate a matrix of gradients in a simplex in one go.

The input frequencies is expected to be a 3 dimensional tensor of shape (p, m, n) while the payoffs
matrix is expected to be of shape (p, p).

The main intention of this helper function is to facilitate
the calculation of the gradients that are required by the plot_gradients method of the
egttools.Simplex2D class.

	Parameters

	
	frequencies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][p,m,n]) – A 3 dimensional tensor containing the set of population frequencies for which the gradient should be
calculated.

	payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][p,p]) – A 2 dimensional matrix containing the payoffs of the game.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group

	Returns

	The gradients for each of the input frequencies.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][p,m,n]

egttools.numerical

The numerical module contains functions and classes to simulate evolutionary dynamics in finite populations.

Classes

	PairwiseComparisonNumerical

	A class containing methods to study numerically the evolutionary dynamics using the Pairwise comparison rule.

	egttools.numerical.numerical

	The numerical module contains optimized functions and classes to simulate evolutionary dynamics in large populations.

egttools.numerical.PairwiseComparisonNumerical

	
class PairwiseComparisonNumerical(self: egttools.numerical.numerical.PairwiseComparisonNumerical, pop_size: int [https://docs.python.org/3/library/functions.html#int], game: egttools.numerical.numerical.games.AbstractGame, cache_size: int [https://docs.python.org/3/library/functions.html#int])

	Bases: pybind11_object

A class containing methods to study numerically the evolutionary dynamics using the Pairwise comparison rule.

This class defines methods to estimate numerically fixation probabilities, stationary distributions with or without
mutation, and strategy distributions.

	Parameters

	
	population_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	game (egttools.games.AbstractGame) – A game object which must implement the abstract class egttools.games.AbstractGame.
This game will contain the expected payoffs for each strategy in the game, or at least
a method to compute it, and a method to calculate the fitness of each strategy for a given
population state.

	cache_size (int [https://docs.python.org/3/library/functions.html#int]) – The maximum size of the cache.

See also

egttools.analytical.PairwiseComparison, egttools.analytical.StochDynamics, egttools.games.AbstractGame

Note

Numerical computations are not exact. Moreover, for now we still did not implement a method to automatically
detect if the precision of the estimation of the stationary and strategy distributions are good enough and,
thus, stop the simulation. You are advised to test different nb_generations and transitory periods for your
specific problem (game).

If you want to have exact calculations, you can use egttools.analytical.PairwiseComparison. However, this
is only advisable for systems with a smaller number of states (i.e., not too big population size or number of strategies).
Otherwise, the calculations might require too much memory.

Methods

	estimate_fixation_probability

	Estimates the fixation probability of an invading strategy in a population o resident strategy.

	estimate_stationary_distribution

	Estimates the stationary distribution of the population of strategies given the game.

	estimate_stationary_distribution_sparse

	Estimates the stationary distribution of the population of strategies given the game.

	estimate_strategy_distribution

	Estimates the distribution of strategies in the population given the current game.

	evolve

	Runs the moran process for a given number of generations.

	run

	Runs the evolutionary process and returns a matrix with all the states the system went through.

Attributes

	cache_size

	Maximum memory which can be used to cache the fitness calculations.

	nb_states

	number of possible population states

	nb_strategies

	Number of strategies in the population.

	payoffs

	Payoff matrix containing the payoff of each strategy (row) for each game state (column)

	pop_size

	Size of the population.

	
__init__(self: egttools.numerical.numerical.PairwiseComparisonNumerical, pop_size: int [https://docs.python.org/3/library/functions.html#int], game: egttools.numerical.numerical.games.AbstractGame, cache_size: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	A class containing methods to study numerically the evolutionary dynamics using the Pairwise comparison rule.

This class defines methods to estimate numerically fixation probabilities, stationary distributions with or without
mutation, and strategy distributions.

	Parameters

	
	population_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	game (egttools.games.AbstractGame) – A game object which must implement the abstract class egttools.games.AbstractGame.
This game will contain the expected payoffs for each strategy in the game, or at least
a method to compute it, and a method to calculate the fitness of each strategy for a given
population state.

	cache_size (int [https://docs.python.org/3/library/functions.html#int]) – The maximum size of the cache.

See also

egttools.analytical.PairwiseComparison, egttools.analytical.StochDynamics, egttools.games.AbstractGame

Note

Numerical computations are not exact. Moreover, for now we still did not implement a method to automatically
detect if the precision of the estimation of the stationary and strategy distributions are good enough and,
thus, stop the simulation. You are advised to test different nb_generations and transitory periods for your
specific problem (game).

If you want to have exact calculations, you can use egttools.analytical.PairwiseComparison. However, this
is only advisable for systems with a smaller number of states (i.e., not too big population size or number of strategies).
Otherwise, the calculations might require too much memory.

	
__new__(**kwargs)

	

	
estimate_fixation_probability(self: egttools.numerical.numerical.PairwiseComparisonNumerical, index_invading_strategy: int [https://docs.python.org/3/library/functions.html#int], index_resident_strategy: int [https://docs.python.org/3/library/functions.html#int], nb_runs: int [https://docs.python.org/3/library/functions.html#int], nb_generations: int [https://docs.python.org/3/library/functions.html#int], beta: float [https://docs.python.org/3/library/functions.html#float]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fixation probability of an invading strategy in a population o resident strategy.

This method estimates the fixation probability of one mutant of the invading strategy
in a population where all other individuals adopt the resident strategy.

The :param nb_runs is very important, since simulations
are stopped once a monomorphic state is reached (all individuals adopt the same
strategy). The more runs you specify, the better the estimation. You should consider
specifying at least a 1000 runs.

	Parameters

	
	index_invading_strategy (int [https://docs.python.org/3/library/functions.html#int]) – Index of the invading strategy.

	index_resident_strategy (int [https://docs.python.org/3/library/functions.html#int]) – Index of the resident strategy.

	nb_runs (int [https://docs.python.org/3/library/functions.html#int]) – Number of independent runs. This parameter is very important, since simulations
are stopped once a monomorphic state is reached (all individuals adopt the same
strategy). The more runs you specify, the better the estimation. You should consider
specifying at least a 1000 runs.

	nb_generations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of generations for a single run.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	Returns

	A matrix containing all the states the system when through, including also the initial state.
The shape of the matrix is (nb_generations - transient, nb_strategies).

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.numerical.PairwiseComparisonNumerical.evolve, egttools.numerical.PairwiseComparisonNumerical.run, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_strategy_distribution, egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.fixation_probability, egttools.analytical.StochDynamics.transition_and_fixation_matrix, egttools.analytical.PairwiseComparison.calculate_fixation_probability, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml

	
estimate_stationary_distribution(self: egttools.numerical.numerical.PairwiseComparisonNumerical, nb_runs: int [https://docs.python.org/3/library/functions.html#int], nb_generations: int [https://docs.python.org/3/library/functions.html#int], transitory: int [https://docs.python.org/3/library/functions.html#int], beta: float [https://docs.python.org/3/library/functions.html#float], mu: float [https://docs.python.org/3/library/functions.html#float]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Estimates the stationary distribution of the population of strategies given the game.

This method directly estimates how frequent each strategy is in the population, without calculating
the stationary distribution as an intermediary step. You should use this method when the number
of states of the system is bigger than MAX_LONG_INT, since it would not be possible to index the states
in this case, and estimate_stationary_distribution and estimate_stationary_distribution_sparse would run into an
overflow error.

	Parameters

	
	nb_runs (int [https://docs.python.org/3/library/functions.html#int]) – Number of independent simulations to perform. The final result will be an average over all the runs.

	nb_generations (int [https://docs.python.org/3/library/functions.html#int]) – Total number of generations.

	transitory (int [https://docs.python.org/3/library/functions.html#int]) – Transitory period. These generations will be excluded from the final average. Thus, only the last
nb_generations - transitory generations will be taken into account. This is important, since in
order to obtain a correct average at the steady state, we need to skip the transitory period.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection. This parameter determines how important the difference in payoff between players
is for the probability of imitation. If beta is small, the system will mostly undergo random drift
between strategies. If beta is high, a slight difference in payoff will make a strategy disapear.

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Probability of mutation. This parameter defines how likely it is for a mutation event to occur at a given generation

	Returns

	The average frequency of each strategy in the population stored in a sparse array.

	Return type

	scipy.sparse.csr_matrix

See also

egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_strategy_distribution, egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.fixation_probability, egttools.analytical.StochDynamics.transition_and_fixation_matrix, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.analytical.PairwiseComparison.calculate_gradient_of_selection

	
estimate_stationary_distribution_sparse(self: egttools.numerical.numerical.PairwiseComparisonNumerical, nb_runs: int [https://docs.python.org/3/library/functions.html#int], nb_generations: int [https://docs.python.org/3/library/functions.html#int], transitory: int [https://docs.python.org/3/library/functions.html#int], beta: float [https://docs.python.org/3/library/functions.html#float], mu: float [https://docs.python.org/3/library/functions.html#float]) → scipy.sparse.csr_matrix[numpy.float64]

	Estimates the stationary distribution of the population of strategies given the game.

This method directly estimates how frequent each strategy is in the population, without calculating
the stationary distribution as an intermediary step. You should use this method when the number
of states of the system is bigger than MAX_LONG_INT, since it would not be possible to index the states
in this case, and estimate_stationary_distribution and estimate_stationary_distribution_sparse would run into an
overflow error.

	Parameters

	
	nb_runs (int [https://docs.python.org/3/library/functions.html#int]) – Number of independent simulations to perform. The final result will be an average over all the runs.

	nb_generations (int [https://docs.python.org/3/library/functions.html#int]) – Total number of generations.

	transitory (int [https://docs.python.org/3/library/functions.html#int]) – Transitory period. These generations will be excluded from the final average. Thus, only the last
nb_generations - transitory generations will be taken into account. This is important, since in
order to obtain a correct average at the steady state, we need to skip the transitory period.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection. This parameter determines how important the difference in payoff between players
is for the probability of imitation. If beta is small, the system will mostly undergo random drift
between strategies. If beta is high, a slight difference in payoff will make a strategy disapear.

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Probability of mutation. This parameter defines how likely it is for a mutation event to
occur at a given generation

	Returns

	
	scipy.sparse.csr_matrix

	The average frequency of each strategy in the population stored in a sparse array.

See also

egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.PairwiseComparisonNumerical.estimate_strategy_distribution, egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.fixation_probability, egttools.analytical.StochDynamics.transition_and_fixation_matrix, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.analytical.PairwiseComparison.calculate_gradient_of_selection

	
estimate_strategy_distribution(self: egttools.numerical.numerical.PairwiseComparisonNumerical, nb_runs: int [https://docs.python.org/3/library/functions.html#int], nb_generations: int [https://docs.python.org/3/library/functions.html#int], transitory: int [https://docs.python.org/3/library/functions.html#int], beta: float [https://docs.python.org/3/library/functions.html#float], mu: float [https://docs.python.org/3/library/functions.html#float]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Estimates the distribution of strategies in the population given the current game.

This method directly estimates how frequent each strategy is in the population, without calculating
the stationary distribution as an intermediary step. You should use this method when the number
of states of the system is bigger than MAX_LONG_INT, since it would not be possible to index the states
in this case, and estimate_stationary_distribution and estimate_stationary_distribution_sparse would run into an
overflow error.

	Parameters

	
	nb_runs (int [https://docs.python.org/3/library/functions.html#int]) – Number of independent simulations to perform. The final result will be an average over all the runs.

	nb_generations (int [https://docs.python.org/3/library/functions.html#int]) – Total number of generations.

	transitory (int [https://docs.python.org/3/library/functions.html#int]) – Transitory period. These generations will be excluded from the final average. Thus, only the last
nb_generations - transitory generations will be taken into account. This is important, since in
order to obtain a correct average at the steady state, we need to skip the transitory period.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection. This parameter determines how important the difference in payoff between players
is for the probability of imitation. If beta is small, the system will mostly undergo random drift
between strategies. If beta is high, a slight difference in payoff will make a strategy disapear.

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Probability of mutation. This parameter defines how likely it is for a mutation event to occur at a given generation

	Returns

	The average frequency of each strategy in the population.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

See also

egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.fixation_probability, egttools.analytical.StochDynamics.transition_and_fixation_matrix, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.analytical.PairwiseComparison.calculate_gradient_of_selection

	
evolve(self: egttools.numerical.numerical.PairwiseComparisonNumerical, nb_generations: int [https://docs.python.org/3/library/functions.html#int], beta: float [https://docs.python.org/3/library/functions.html#float], mu: float [https://docs.python.org/3/library/functions.html#float], init_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]

	Runs the moran process for a given number of generations.

	Parameters

	
	nb_generations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of generations.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Mutation rate.

	init_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Initial state of the population. This must be a vector of integers of shape (nb_strategies,),
containing the counts of each strategy in the population. It serves as the initial state
from which the evolutionary process will start.

	Returns

	A vector of integers containing the final state reached during the evolutionary process.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.numerical.PairwiseComparisonNumerical.run, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_strategy_distribution

	
run()

	Runs the evolutionary process and returns a matrix with all the states the system went through.

	Parameters

	
	nb_generations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of generations.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	init_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Initial state of the population. This must be a vector of integers of shape (nb_strategies,),
containing the counts of each strategy in the population. It serves as the initial state
from which the evolutionary process will start.

	Returns

	A matrix containing all the states the system when through, including also the initial state.
The shape of the matrix is (nb_generations + 1, nb_strategies).

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.numerical.PairwiseComparisonNumerical.evolve, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_strategy_distribution

Runs the evolutionary process and returns a matrix with all the states the system went through.

Mutation events will happen with rate :param mu, and the transient states will not be returned.

	Parameters

	
	nb_generations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of generations.

	transient (int [https://docs.python.org/3/library/functions.html#int]) – Transient period. Amount of generations that should not be skipped in the return vector.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Mutation rate.

	init_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Initial state of the population. This must be a vector of integers of shape (nb_strategies,),
containing the counts of each strategy in the population. It serves as the initial state
from which the evolutionary process will start.

	Returns

	A matrix containing all the states the system when through, including also the initial state.
The shape of the matrix is (nb_generations - transient, nb_strategies).

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.numerical.PairwiseComparisonNumerical.evolve, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_strategy_distribution

Runs the evolutionary process and returns a matrix with all the states the system went through.

Mutation events will happen with rate :param mu.

	Parameters

	
	nb_generations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of generations.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Mutation rate.

	init_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Initial state of the population. This must be a vector of integers of shape (nb_strategies,),
containing the counts of each strategy in the population. It serves as the initial state
from which the evolutionary process will start.

	Returns

	A matrix containing all the states the system when through, including also the initial state.
The shape of the matrix is (nb_generations - transient, nb_strategies).

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.numerical.PairwiseComparisonNumerical.evolve, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_strategy_distribution

	
property cache_size

	Maximum memory which can be used to cache the fitness calculations.

	
property nb_states

	number of possible population states

	
property nb_strategies

	Number of strategies in the population.

	
property payoffs

	Payoff matrix containing the payoff of each strategy (row) for each game state (column)

	
property pop_size

	Size of the population.

egttools.numerical.numerical

The numerical module contains optimized functions and classes to simulate evolutionary dynamics in large populations. This module is written in C++.

Functions

	calculate_nb_states

	Calculates the number of states (combinations) of the members of a group in a subgroup.

	calculate_state

	This function converts a vector containing counts into an index.

	calculate_strategies_distribution

	Calculates the average frequency of each strategy available in the population given the stationary distribution.

	replicator_equation

	Calculates the gradient of the replicator dynamics given the current population state.

	replicator_equation_n_player

	Calculates the gradient of the replicator dynamics given the current population state.

	sample_simplex

	Transforms a state index into a vector.

	sample_simplex_directly

	Samples an N-dimensional point directly from the simplex.

	sample_unit_simplex

	Samples uniformly at random the unit simplex with nb_strategies dimensionse.

	vectorized_replicator_equation_n_player

	Calculates the gradient of the replicator dynamics given the current population state.

Classes

	PairwiseComparison

	A class containing methods to study analytically the evolutionary dynamics using the Pairwise comparison rule.

	PairwiseComparisonNumerical

	A class containing methods to study numerically the evolutionary dynamics using the Pairwise comparison rule.

	Random

	Random seed generator.

egttools.numerical.numerical.calculate_nb_states

	
calculate_nb_states(group_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → object [https://docs.python.org/3/library/functions.html#object]

	Calculates the number of states (combinations) of the members of a group in a subgroup.

It can be used to calculate the maximum number of states in a discrete simplex.

The implementation of this method follows the stars and bars algorithm (see Wikipedia).

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group (maximum number of players/elements that can adopt each possible strategy).

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies that can be assigned to players.

	Returns

	Number of states (possible combinations of strategies and players).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.numerical.calculate_state, egttools.numerical.sample_simplex

egttools.numerical.numerical.calculate_state

	
calculate_state()

	This function converts a vector containing counts into an index.

This method was copied from @Svalorzen.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum bin size (it can also be the population size).

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – The vector to convert from simplex coordinates to index.

	Returns

	The unique index in [0, egttools.calculate_nb_states(group_size, len(group_composition))
representing the n-dimensional simplex.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.sample_simplex, egttools.calculate_nb_states

This function converts a vector containing counts into an index.

This method was copied from @Svalorzen.

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum bin size (it can also be the population size).

	group_composition (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]) – The vector to convert from simplex coordinates to index.

	Returns

	The unique index in [0, egttools.calculate_nb_states(group_size, len(group_composition))
representing the n-dimensional simplex.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.sample_simplex, egttools.calculate_nb_states

egttools.numerical.numerical.calculate_strategies_distribution

	
calculate_strategies_distribution(pop_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int], stationary_distribution: scipy.sparse.csr_matrix[numpy.float64]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Calculates the average frequency of each strategy available in the population given the stationary distribution.

It expects that the stationary_distribution is in sparse form.

	Parameters

	
	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies that can be assigned to players.

	stationary_distribution (scipy.sparse.csr_matrix) – A sparse matrix which contains the stationary distribution (the frequency with which the evolutionary system visits each
stationary state).

	Returns

	Average frequency of each strategy in the stationary evolutionary system.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.sample_simplex, egttools.numerical.calculate_nb_states, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.calculate_nb_states, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse

egttools.numerical.numerical.replicator_equation

	
replicator_equation(frequencies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]], payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Calculates the gradient of the replicator dynamics given the current population state.

	Parameters

	
	frequencies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Vector of frequencies of each strategy in the population (it must have
shape=(nb_strategies,)

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Square matrix containing the payoff of each row strategy against each column strategy

	Returns

	A vector with the gradient for each strategy. The vector has shape (nb_strategies,)

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.analytical.replicator_equation_n_player, egttools.numerical.PairwiseComparison, egttools.numerical.PairwiseComparisonNumerical, egttools.analytical.StochDynamics, egttools.games.AbstractGame

egttools.numerical.numerical.replicator_equation_n_player

	
replicator_equation_n_player(frequencies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]], payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]], group_size: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Calculates the gradient of the replicator dynamics given the current population state.

	Parameters

	
	frequencies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Vector of frequencies of each strategy in the population (it must have
shape=(nb_strategies,)

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A payoff matrix containing the payoff of each row strategy for each
possible group configuration, indicated by the column index.
The matrix must have shape (nb_strategies, nb_group_configurations).

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group

	Returns

	A vector with the gradient for each strategy. The vector has shape (nb_strategies,)

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.analytical.replicator_equation, egttools.numerical.PairwiseComparison, egttools.numerical.PairwiseComparisonNumerical, egttools.analytical.StochDynamics, egttools.games.AbstractGame

egttools.numerical.numerical.sample_simplex

	
sample_simplex(index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]

	Transforms a state index into a vector.

	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – State index.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies.

	Returns

	Vector with the sampled state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.calculate_nb_states

egttools.numerical.numerical.sample_simplex_directly

	
sample_simplex_directly(nb_strategies: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]

	Samples an N-dimensional point directly from the simplex.

N is the number of strategies.

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	Returns

	Vector with the sampled state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.calculate_nb_states, egttools.numerical.sample_simplex

egttools.numerical.numerical.sample_unit_simplex

	
sample_unit_simplex(nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Samples uniformly at random the unit simplex with nb_strategies dimensionse.

	Parameters

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies.

	Returns

	Vector with the sampled state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.calculate_nb_states, egttools.numerical.sample_simplex

egttools.numerical.numerical.vectorized_replicator_equation_n_player

	
vectorized_replicator_equation_n_player(x1: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]], x2: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]], x3: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]], payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]], group_size: int [https://docs.python.org/3/library/functions.html#int]) → Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]]

	Calculates the gradient of the replicator dynamics given the current population state.

This function must only be used for 3 strategy populations! It provides a fast way
to compute the gradient of selection for a large number of population states.

You need to pass 3 matrices each containing the frequency of one strategy.

The combination of [x1[i,j], x2[i,j], x3[i,j]], gives the population state.

	Parameters

	
	x1 (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Matrix containing the first component of the frequencies

	x2 (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Matrix containing the second component of the frequencies

	x3 (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Matrix containing the third component of the frequencies

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A payoff matrix containing the payoff of each row strategy for each
possible group configuration, indicated by the column index.
The matrix must have shape (nb_strategies, nb_group_configurations).

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group

	Returns

	Returns 3 matrices containing the gradient of each strategy. Each Matrix
has the same shape as x1, x2 and x3.

	Return type

	Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

See also

egttools.analytical.replicator_equation, egttools.numerical.PairwiseComparison, egttools.numerical.PairwiseComparisonNumerical, egttools.analytical.StochDynamics, egttools.games.AbstractGame

egttools.numerical.numerical.PairwiseComparison

	
class PairwiseComparison(self: egttools.numerical.numerical.PairwiseComparison, population_size: int [https://docs.python.org/3/library/functions.html#int], game: egttools.numerical.numerical.games.AbstractGame)

	Bases: pybind11_object

A class containing methods to study analytically the evolutionary dynamics using the Pairwise comparison rule.

This class defines methods to compute fixation probabilities, transition matrices in the Small Mutation
Limit (SML), gradients of selection, and the full transition matrices of the system when considering
mutation > 0.

	Parameters

	
	population_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	game (egttools.games.AbstractGame) – A game object which must implement the abstract class egttools.games.AbstractGame.
This game will contain the expected payoffs for each strategy in the game, or at least
a method to compute it, and a method to calculate the fitness of each strategy for a given
population state.

See also

egttools.numerical.PairwiseComparisonNumerical, egttools.analytical.StochDynamics, egttools.games.AbstractGame

Note

Analytical computations should be avoided for problems with very large state spaces.
This means very big populations with many strategies. The bigger the state space, the
more memory and time these methods will require!

Also, for now it is not possible to update the game without having to instantiate PairwiseComparison
again. Hopefully, this will be fixed in the future.

Methods

	calculate_fixation_probability

	Calculates the fixation probability of an invading strategy in a population o resident strategy.

	calculate_gradient_of_selection

	Calculates the gradient of selection without mutation for the given state.

	calculate_transition_and_fixation_matrix_sml

	Calculates the transition matrix of the reduced Markov Chain that emerges when assuming SML.

	calculate_transition_matrix

	Computes the transition matrix of the Markov Chain which defines the population dynamics.

	game

	

	nb_states

	

	nb_strategies

	

	population_size

	

	update_population_size

	

	
__init__(self: egttools.numerical.numerical.PairwiseComparison, population_size: int [https://docs.python.org/3/library/functions.html#int], game: egttools.numerical.numerical.games.AbstractGame) → None [https://docs.python.org/3/library/constants.html#None]

	A class containing methods to study analytically the evolutionary dynamics using the Pairwise comparison rule.

This class defines methods to compute fixation probabilities, transition matrices in the Small Mutation
Limit (SML), gradients of selection, and the full transition matrices of the system when considering
mutation > 0.

	Parameters

	
	population_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	game (egttools.games.AbstractGame) – A game object which must implement the abstract class egttools.games.AbstractGame.
This game will contain the expected payoffs for each strategy in the game, or at least
a method to compute it, and a method to calculate the fitness of each strategy for a given
population state.

See also

egttools.numerical.PairwiseComparisonNumerical, egttools.analytical.StochDynamics, egttools.games.AbstractGame

Note

Analytical computations should be avoided for problems with very large state spaces.
This means very big populations with many strategies. The bigger the state space, the
more memory and time these methods will require!

Also, for now it is not possible to update the game without having to instantiate PairwiseComparison
again. Hopefully, this will be fixed in the future.

	
__new__(**kwargs)

	

	
calculate_fixation_probability(self: egttools.numerical.numerical.PairwiseComparison, invading_strategy_index: int [https://docs.python.org/3/library/functions.html#int], resident_strategy_index: int [https://docs.python.org/3/library/functions.html#int], beta: float [https://docs.python.org/3/library/functions.html#float]) → float [https://docs.python.org/3/library/functions.html#float]

	Calculates the fixation probability of an invading strategy in a population o resident strategy.

This method calculates the fixation probability of one mutant of the invading strategy
in a population where all other individuals adopt the resident strategy.

	Parameters

	
	index_invading_strategy (int [https://docs.python.org/3/library/functions.html#int]) – Index of the invading strategy

	index_resident_strategy (int [https://docs.python.org/3/library/functions.html#int]) – Index of the resident strategy

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection

	Returns

	The fixation probability of one mutant of the invading strategy in a population
where all other members adopt the resident strategy.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

See also

egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.fixation_probability, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.analytical.PairwiseComparison.calculate_gradient_of_selection, egttools.numerical.PairwiseComparisonNumerical, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_fixation_probability

	
calculate_gradient_of_selection(self: egttools.numerical.numerical.PairwiseComparison, beta: float [https://docs.python.org/3/library/functions.html#float], state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Calculates the gradient of selection without mutation for the given state.

This method calculates the gradient of selection (without mutation), which is, the
most likely direction of evolution of the system.

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection

	state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Vector containing the counts of each strategy in the population.

	Returns

	Vector of shape (nb_strategies,) containing the gradient of selection, i.e.,
The most likely path of evolution of the stochastic system.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.full_gradient_selection, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.numerical.PairwiseComparisonNumerical, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse

	
calculate_transition_and_fixation_matrix_sml(self: egttools.numerical.numerical.PairwiseComparison, beta: float [https://docs.python.org/3/library/functions.html#float]) → Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]]

	Calculates the transition matrix of the reduced Markov Chain that emerges when assuming SML.

By assuming the limit of small mutations (SML), we can reduce the number of states of the dynamical system
to those which are monomorphic, i.e., the whole population adopts the same strategy.

Thus, the dimensions of the transition matrix in the SML is (nb_strategies, nb_strategies), and
the transitions are given by the normalized fixation probabilities. This means that a transition
where i neq j, T[i, j] = fixation(i, j) / (nb_strategies - 1) and T[i, i] = 1 - sum{T[i, j]}.

This method will also return the matrix of fixation probabilities,
where fixation_probabilities[i, j] gives the probability that one mutant j fixates in a population
of i.

	Parameters

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection

	Returns

	A tuple including the transition matrix and a matrix with the fixation probabilities.
Both matrices have shape (nb_strategies, nb_strategies).

	Return type

	Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

See also

egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.fixation_probability, egttools.analytical.StochDynamics.transition_and_fixation_matrix, egttools.analytical.PairwiseComparison.calculate_fixation_probability, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.analytical.PairwiseComparison.calculate_gradient_of_selection, egttools.numerical.PairwiseComparisonNumerical, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_fixation_probability

	
calculate_transition_matrix(self: egttools.numerical.numerical.PairwiseComparison, beta: float [https://docs.python.org/3/library/functions.html#float], mu: float [https://docs.python.org/3/library/functions.html#float]) → scipy.sparse.csr_matrix[numpy.float64]

	Computes the transition matrix of the Markov Chain which defines the population dynamics.

It is not advisable to use this method for very large state spaces since the memory required
to store the matrix might explode. In these cases you should resort to dimensional reduction
techniques, such as the Small Mutation Limit (SML).

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Mutation rate

	Returns

	Sparse vector containing the transition probabilities from any population state to another.
This matrix will be of shape nb_states x nb_states.

	Return type

	scipy.sparse.csr_matrix

See also

egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.calculate_full_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.numerical.PairwiseComparisonNumerical, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse

	
game(self: egttools.numerical.numerical.PairwiseComparison) → egttools.numerical.numerical.games.AbstractGame

	

	
nb_states(self: egttools.numerical.numerical.PairwiseComparison) → int [https://docs.python.org/3/library/functions.html#int]

	

	
nb_strategies(self: egttools.numerical.numerical.PairwiseComparison) → int [https://docs.python.org/3/library/functions.html#int]

	

	
population_size(self: egttools.numerical.numerical.PairwiseComparison) → int [https://docs.python.org/3/library/functions.html#int]

	

	
update_population_size(self: egttools.numerical.numerical.PairwiseComparison, arg0: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	

egttools.numerical.numerical.PairwiseComparisonNumerical

	
class PairwiseComparisonNumerical(self: egttools.numerical.numerical.PairwiseComparisonNumerical, pop_size: int [https://docs.python.org/3/library/functions.html#int], game: egttools.numerical.numerical.games.AbstractGame, cache_size: int [https://docs.python.org/3/library/functions.html#int])

	Bases: pybind11_object

A class containing methods to study numerically the evolutionary dynamics using the Pairwise comparison rule.

This class defines methods to estimate numerically fixation probabilities, stationary distributions with or without
mutation, and strategy distributions.

	Parameters

	
	population_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	game (egttools.games.AbstractGame) – A game object which must implement the abstract class egttools.games.AbstractGame.
This game will contain the expected payoffs for each strategy in the game, or at least
a method to compute it, and a method to calculate the fitness of each strategy for a given
population state.

	cache_size (int [https://docs.python.org/3/library/functions.html#int]) – The maximum size of the cache.

See also

egttools.analytical.PairwiseComparison, egttools.analytical.StochDynamics, egttools.games.AbstractGame

Note

Numerical computations are not exact. Moreover, for now we still did not implement a method to automatically
detect if the precision of the estimation of the stationary and strategy distributions are good enough and,
thus, stop the simulation. You are advised to test different nb_generations and transitory periods for your
specific problem (game).

If you want to have exact calculations, you can use egttools.analytical.PairwiseComparison. However, this
is only advisable for systems with a smaller number of states (i.e., not too big population size or number of strategies).
Otherwise, the calculations might require too much memory.

Methods

	estimate_fixation_probability

	Estimates the fixation probability of an invading strategy in a population o resident strategy.

	estimate_stationary_distribution

	Estimates the stationary distribution of the population of strategies given the game.

	estimate_stationary_distribution_sparse

	Estimates the stationary distribution of the population of strategies given the game.

	estimate_strategy_distribution

	Estimates the distribution of strategies in the population given the current game.

	evolve

	Runs the moran process for a given number of generations.

	run

	Runs the evolutionary process and returns a matrix with all the states the system went through.

Attributes

	cache_size

	Maximum memory which can be used to cache the fitness calculations.

	nb_states

	number of possible population states

	nb_strategies

	Number of strategies in the population.

	payoffs

	Payoff matrix containing the payoff of each strategy (row) for each game state (column)

	pop_size

	Size of the population.

	
__init__(self: egttools.numerical.numerical.PairwiseComparisonNumerical, pop_size: int [https://docs.python.org/3/library/functions.html#int], game: egttools.numerical.numerical.games.AbstractGame, cache_size: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	A class containing methods to study numerically the evolutionary dynamics using the Pairwise comparison rule.

This class defines methods to estimate numerically fixation probabilities, stationary distributions with or without
mutation, and strategy distributions.

	Parameters

	
	population_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	game (egttools.games.AbstractGame) – A game object which must implement the abstract class egttools.games.AbstractGame.
This game will contain the expected payoffs for each strategy in the game, or at least
a method to compute it, and a method to calculate the fitness of each strategy for a given
population state.

	cache_size (int [https://docs.python.org/3/library/functions.html#int]) – The maximum size of the cache.

See also

egttools.analytical.PairwiseComparison, egttools.analytical.StochDynamics, egttools.games.AbstractGame

Note

Numerical computations are not exact. Moreover, for now we still did not implement a method to automatically
detect if the precision of the estimation of the stationary and strategy distributions are good enough and,
thus, stop the simulation. You are advised to test different nb_generations and transitory periods for your
specific problem (game).

If you want to have exact calculations, you can use egttools.analytical.PairwiseComparison. However, this
is only advisable for systems with a smaller number of states (i.e., not too big population size or number of strategies).
Otherwise, the calculations might require too much memory.

	
__new__(**kwargs)

	

	
estimate_fixation_probability(self: egttools.numerical.numerical.PairwiseComparisonNumerical, index_invading_strategy: int [https://docs.python.org/3/library/functions.html#int], index_resident_strategy: int [https://docs.python.org/3/library/functions.html#int], nb_runs: int [https://docs.python.org/3/library/functions.html#int], nb_generations: int [https://docs.python.org/3/library/functions.html#int], beta: float [https://docs.python.org/3/library/functions.html#float]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fixation probability of an invading strategy in a population o resident strategy.

This method estimates the fixation probability of one mutant of the invading strategy
in a population where all other individuals adopt the resident strategy.

The :param nb_runs is very important, since simulations
are stopped once a monomorphic state is reached (all individuals adopt the same
strategy). The more runs you specify, the better the estimation. You should consider
specifying at least a 1000 runs.

	Parameters

	
	index_invading_strategy (int [https://docs.python.org/3/library/functions.html#int]) – Index of the invading strategy.

	index_resident_strategy (int [https://docs.python.org/3/library/functions.html#int]) – Index of the resident strategy.

	nb_runs (int [https://docs.python.org/3/library/functions.html#int]) – Number of independent runs. This parameter is very important, since simulations
are stopped once a monomorphic state is reached (all individuals adopt the same
strategy). The more runs you specify, the better the estimation. You should consider
specifying at least a 1000 runs.

	nb_generations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of generations for a single run.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	Returns

	A matrix containing all the states the system when through, including also the initial state.
The shape of the matrix is (nb_generations - transient, nb_strategies).

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.numerical.PairwiseComparisonNumerical.evolve, egttools.numerical.PairwiseComparisonNumerical.run, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_strategy_distribution, egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.fixation_probability, egttools.analytical.StochDynamics.transition_and_fixation_matrix, egttools.analytical.PairwiseComparison.calculate_fixation_probability, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml

	
estimate_stationary_distribution(self: egttools.numerical.numerical.PairwiseComparisonNumerical, nb_runs: int [https://docs.python.org/3/library/functions.html#int], nb_generations: int [https://docs.python.org/3/library/functions.html#int], transitory: int [https://docs.python.org/3/library/functions.html#int], beta: float [https://docs.python.org/3/library/functions.html#float], mu: float [https://docs.python.org/3/library/functions.html#float]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Estimates the stationary distribution of the population of strategies given the game.

This method directly estimates how frequent each strategy is in the population, without calculating
the stationary distribution as an intermediary step. You should use this method when the number
of states of the system is bigger than MAX_LONG_INT, since it would not be possible to index the states
in this case, and estimate_stationary_distribution and estimate_stationary_distribution_sparse would run into an
overflow error.

	Parameters

	
	nb_runs (int [https://docs.python.org/3/library/functions.html#int]) – Number of independent simulations to perform. The final result will be an average over all the runs.

	nb_generations (int [https://docs.python.org/3/library/functions.html#int]) – Total number of generations.

	transitory (int [https://docs.python.org/3/library/functions.html#int]) – Transitory period. These generations will be excluded from the final average. Thus, only the last
nb_generations - transitory generations will be taken into account. This is important, since in
order to obtain a correct average at the steady state, we need to skip the transitory period.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection. This parameter determines how important the difference in payoff between players
is for the probability of imitation. If beta is small, the system will mostly undergo random drift
between strategies. If beta is high, a slight difference in payoff will make a strategy disapear.

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Probability of mutation. This parameter defines how likely it is for a mutation event to occur at a given generation

	Returns

	The average frequency of each strategy in the population stored in a sparse array.

	Return type

	scipy.sparse.csr_matrix

See also

egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_strategy_distribution, egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.fixation_probability, egttools.analytical.StochDynamics.transition_and_fixation_matrix, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.analytical.PairwiseComparison.calculate_gradient_of_selection

	
estimate_stationary_distribution_sparse(self: egttools.numerical.numerical.PairwiseComparisonNumerical, nb_runs: int [https://docs.python.org/3/library/functions.html#int], nb_generations: int [https://docs.python.org/3/library/functions.html#int], transitory: int [https://docs.python.org/3/library/functions.html#int], beta: float [https://docs.python.org/3/library/functions.html#float], mu: float [https://docs.python.org/3/library/functions.html#float]) → scipy.sparse.csr_matrix[numpy.float64]

	Estimates the stationary distribution of the population of strategies given the game.

This method directly estimates how frequent each strategy is in the population, without calculating
the stationary distribution as an intermediary step. You should use this method when the number
of states of the system is bigger than MAX_LONG_INT, since it would not be possible to index the states
in this case, and estimate_stationary_distribution and estimate_stationary_distribution_sparse would run into an
overflow error.

	Parameters

	
	nb_runs (int [https://docs.python.org/3/library/functions.html#int]) – Number of independent simulations to perform. The final result will be an average over all the runs.

	nb_generations (int [https://docs.python.org/3/library/functions.html#int]) – Total number of generations.

	transitory (int [https://docs.python.org/3/library/functions.html#int]) – Transitory period. These generations will be excluded from the final average. Thus, only the last
nb_generations - transitory generations will be taken into account. This is important, since in
order to obtain a correct average at the steady state, we need to skip the transitory period.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection. This parameter determines how important the difference in payoff between players
is for the probability of imitation. If beta is small, the system will mostly undergo random drift
between strategies. If beta is high, a slight difference in payoff will make a strategy disapear.

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Probability of mutation. This parameter defines how likely it is for a mutation event to
occur at a given generation

	Returns

	
	scipy.sparse.csr_matrix

	The average frequency of each strategy in the population stored in a sparse array.

See also

egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.PairwiseComparisonNumerical.estimate_strategy_distribution, egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.fixation_probability, egttools.analytical.StochDynamics.transition_and_fixation_matrix, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.analytical.PairwiseComparison.calculate_gradient_of_selection

	
estimate_strategy_distribution(self: egttools.numerical.numerical.PairwiseComparisonNumerical, nb_runs: int [https://docs.python.org/3/library/functions.html#int], nb_generations: int [https://docs.python.org/3/library/functions.html#int], transitory: int [https://docs.python.org/3/library/functions.html#int], beta: float [https://docs.python.org/3/library/functions.html#float], mu: float [https://docs.python.org/3/library/functions.html#float]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Estimates the distribution of strategies in the population given the current game.

This method directly estimates how frequent each strategy is in the population, without calculating
the stationary distribution as an intermediary step. You should use this method when the number
of states of the system is bigger than MAX_LONG_INT, since it would not be possible to index the states
in this case, and estimate_stationary_distribution and estimate_stationary_distribution_sparse would run into an
overflow error.

	Parameters

	
	nb_runs (int [https://docs.python.org/3/library/functions.html#int]) – Number of independent simulations to perform. The final result will be an average over all the runs.

	nb_generations (int [https://docs.python.org/3/library/functions.html#int]) – Total number of generations.

	transitory (int [https://docs.python.org/3/library/functions.html#int]) – Transitory period. These generations will be excluded from the final average. Thus, only the last
nb_generations - transitory generations will be taken into account. This is important, since in
order to obtain a correct average at the steady state, we need to skip the transitory period.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection. This parameter determines how important the difference in payoff between players
is for the probability of imitation. If beta is small, the system will mostly undergo random drift
between strategies. If beta is high, a slight difference in payoff will make a strategy disapear.

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Probability of mutation. This parameter defines how likely it is for a mutation event to occur at a given generation

	Returns

	The average frequency of each strategy in the population.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

See also

egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.fixation_probability, egttools.analytical.StochDynamics.transition_and_fixation_matrix, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.analytical.PairwiseComparison.calculate_gradient_of_selection

	
evolve(self: egttools.numerical.numerical.PairwiseComparisonNumerical, nb_generations: int [https://docs.python.org/3/library/functions.html#int], beta: float [https://docs.python.org/3/library/functions.html#float], mu: float [https://docs.python.org/3/library/functions.html#float], init_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]

	Runs the moran process for a given number of generations.

	Parameters

	
	nb_generations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of generations.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Mutation rate.

	init_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Initial state of the population. This must be a vector of integers of shape (nb_strategies,),
containing the counts of each strategy in the population. It serves as the initial state
from which the evolutionary process will start.

	Returns

	A vector of integers containing the final state reached during the evolutionary process.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.numerical.PairwiseComparisonNumerical.run, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_strategy_distribution

	
run()

	Runs the evolutionary process and returns a matrix with all the states the system went through.

	Parameters

	
	nb_generations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of generations.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	init_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Initial state of the population. This must be a vector of integers of shape (nb_strategies,),
containing the counts of each strategy in the population. It serves as the initial state
from which the evolutionary process will start.

	Returns

	A matrix containing all the states the system when through, including also the initial state.
The shape of the matrix is (nb_generations + 1, nb_strategies).

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.numerical.PairwiseComparisonNumerical.evolve, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_strategy_distribution

Runs the evolutionary process and returns a matrix with all the states the system went through.

Mutation events will happen with rate :param mu, and the transient states will not be returned.

	Parameters

	
	nb_generations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of generations.

	transient (int [https://docs.python.org/3/library/functions.html#int]) – Transient period. Amount of generations that should not be skipped in the return vector.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Mutation rate.

	init_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Initial state of the population. This must be a vector of integers of shape (nb_strategies,),
containing the counts of each strategy in the population. It serves as the initial state
from which the evolutionary process will start.

	Returns

	A matrix containing all the states the system when through, including also the initial state.
The shape of the matrix is (nb_generations - transient, nb_strategies).

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.numerical.PairwiseComparisonNumerical.evolve, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_strategy_distribution

Runs the evolutionary process and returns a matrix with all the states the system went through.

Mutation events will happen with rate :param mu.

	Parameters

	
	nb_generations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of generations.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Mutation rate.

	init_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Initial state of the population. This must be a vector of integers of shape (nb_strategies,),
containing the counts of each strategy in the population. It serves as the initial state
from which the evolutionary process will start.

	Returns

	A matrix containing all the states the system when through, including also the initial state.
The shape of the matrix is (nb_generations - transient, nb_strategies).

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.numerical.PairwiseComparisonNumerical.evolve, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_strategy_distribution

	
property cache_size

	Maximum memory which can be used to cache the fitness calculations.

	
property nb_states

	number of possible population states

	
property nb_strategies

	Number of strategies in the population.

	
property payoffs

	Payoff matrix containing the payoff of each strategy (row) for each game state (column)

	
property pop_size

	Size of the population.

egttools.numerical.numerical.Random

	
class Random

	Bases: pybind11_object

Random seed generator.

Methods

	generate

	Generates a random seed.

	init

	Overloaded function.

	seed

	This static methods changes the seed of egttools.Random.

	
__init__(*args, **kwargs)

	

	
__new__(**kwargs)

	

	
static generate() → int [https://docs.python.org/3/library/functions.html#int]

	Generates a random seed.

The generated seed can be used to seed other pseudo-random generators,
so that the initial state of the simulation can always be tracked and
the simulation can be reproduced. This is very important both for debugging
purposes as well as for scientific research. However, this approach should
NOT be used in any cryptographic applications, it is NOT safe.

	Returns

	A random seed which can be used to seed new random generators.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
static init(*args, **kwargs)

	Overloaded function.

	init() -> egttools.numerical.numerical.Random

This static method initializes the random seed.

This static method initializes the random seed generator from random_device
and returns an instance of egttools.Random which is used
to seed the random generators used across egttools.

	egttools.Random
	An instance of the random seed generator.

	init(seed: int) -> egttools.numerical.numerical.Random

This static method initializes the random seed generator from seed.

This static method initializes the random seed generator from seed
and returns an instance of egttools.Random which is used
to seed the random generators used across egttools.

	seedint
	Integer value used to seed the random generator.

	egttools.Random
	An instance of the random seed generator.

	
static seed(seed: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	This static methods changes the seed of egttools.Random.

	Parameters

	int – The new seed for the egttools.Random module which is used to seed
every other pseudo-random generation in the egttools package.

egttools.plotting

API reference documentation for the plotting submodule.

Functions

	draw_invasion_diagram

	Draws the markov chain for a given stationary distribution of monomorphic states.

	plot_gradient

	Creates a figure plotting the gradient of selection together with the saddle points, and the gradient arrows.

	plot_gradients

	This function plots the gradient of selection for 1-simplexes (only two strategies).

	plot_pairwise_comparison_rule_dynamics_in_simplex

	Helper function to simplify the plotting of the moran dynamics in a 2 Simplex.

	plot_replicator_dynamics_in_simplex

	Helper function to simplify the plotting of the replicator dynamics in a 2 Simplex.

Classes

	Simplex2D

	Plots a 2-dimensional simplex in a cartesian plane.

	egttools.plotting.helpers

	Helper functions for producing plots on simplexes

	egttools.plotting.indicators

	Helper function to visualize evolutionary dynamics

	egttools.plotting.simplex2d

	

	egttools.plotting.simplified

	Simplified plotting functions

egttools.plotting.draw_invasion_diagram

	
draw_invasion_diagram(strategies, drift, fixation_probabilities, stationary_distribution, atol=0.0001, max_displayed_label_letters=4, min_strategy_frequency=-1, node_size=4000, font_size_node_labels=18, font_size_edge_labels=14, font_size_sd_labels=12, display_node_labels=True, display_edge_labels=True, display_sd_labels=True, node_labels_top_separation=0.15, node_labels_bottom_separation=-0.2, edge_width=2, node_linewidth=0, node_edgecolors=None, figsize=(10, 10), dpi=150, colors=None, ax=None)

	Draws the markov chain for a given stationary distribution of monomorphic states.

	Parameters

	
	strategies (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Strategies and array of string labels for each strategy present in the population.

	drift (float [https://docs.python.org/3/library/functions.html#float]) – drift = 1/pop_size

	fixation_probabilities (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][float [https://docs.python.org/3/library/functions.html#float], 2]) – A matrix specifying the fixation probabilities.

	stationary_distribution (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][float [https://docs.python.org/3/library/functions.html#float], 1]) – An array containing the stationary distribution (probability of each state in the system).

	atol (float [https://docs.python.org/3/library/functions.html#float]) – The tolerance for considering a value equal to 1 (to detect wheter there is random drift). Default is 1e-4.

	max_displayed_label_letters (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of letters of the strategy labels contained in the strategies List to
be displayed.

	min_strategy_frequency (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Minimum frequency of a strategy (its probability given by the stationary distribution)
to be shown in the Graph.

	font_size_node_labels (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Font size of the labels displayed inside each node.

	font_size_edge_labels (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Font size of the labels displayed in each edge (which contain the fixation probabilities).

	font_size_sd_labels (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Font size of the labels displayed beside each node containing the value of the stationary distribution.

	display_node_labels (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Indicates wether the node labels should be displayed.

	display_edge_labels (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Indicates wether the edge labels should be displayed.

	display_sd_labels (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Indicates whether the stationary distribution labels should be displayed.

	node_labels_top_separation (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Gives the separation of node label for nodes with positive y (y > 0)

	node_labels_bottom_separation (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Gives the separation of node label for nodes with negative y (y <= 0)

	edge_width (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Width of the edge line.

	node_linewidth (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Line width of node border

	node_edgecolors (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Colors of node borders

	figsize (Optional[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]) – Size of the default figure (Only used if ax is not specified).

	dpi (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Pixel density of the default plot

	node_size (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Size of the nodes of the Graph to be plotted

	colors (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list with the colors used to plot the nodes of the graph.

	ax (Optional[plt.axis]) – Axis on which to draw the graph.

	Returns

	The graph depicting the Markov chain which represents the invasion dynamics.

	Return type

	networkx.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]

Notes

If there are too many strategies, this function may not only take a lot of time to generate the Graph, but
it will also not be easy to visualize. Also, you should only use this function when ploting the invasion
diagram assuming the small mutation limit of the replication dynamics (SML).

See also

plot_gradient

Examples

>>> import egttools as egt
>>> import matplotlib.pyplot as plt
>>> strategies = [egt.behaviors.NormalForm.TwoActions.Cooperator(), egt.behaviors.NormalForm.TwoActions.Defector(),
... egt.behaviors.NormalForm.TwoActions.TFT(), egt.behaviors.NormalForm.TwoActions.Pavlov(),
... egt.behaviors.NormalForm.TwoActions.Random(), egt.behaviors.NormalForm.TwoActions.GRIM()]
>>> strategy_labels = [strategy.type().replace("NFGStrategies::", '') for strategy in strategies]
>>> T=4; R=2; P=1; S=0; Z= 100; beta=1
>>> A = np.array([
... [P, T],
... [S, R]
...])
>>> game = egt.games.NormalFormGame(100, A, strategies)
>>> evolver = egt.analytical.StochDynamics(len(strategies), game.expected_payoffs(), Z)
>>> sd = evolver.calculate_stationary_distribution(beta)
>>> transitions, fixation_probabilities = evolver.transition_and_fixation_matrix(beta)
>>> fig, ax = plt.subplots(figsize=(5, 5), dpi=150)
>>> G = egt.plotting.draw_invasion_diagram(strategy_labels, 1/Z, fixation_probabilities, sd,
... node_size=2000, min_strategy_frequency=0.00001, ax=ax)
>>> plt.axis('off')
>>> plt.show() # display

egttools.plotting.plot_gradient

	
plot_gradient(x, gradients, saddle_points, saddle_type, gradient_direction, fig_title='', xlabel='', figsize=(5, 4), **kwargs)

	Creates a figure plotting the gradient of selection together with the saddle points,
and the gradient arrows.

	Parameters

	
	x – vector containing the possible states in x axis. It must have the same length as gradient

	gradients – vector containing the gradient for each possible state

	saddle_points – vector containing all saddle points

	saddle_type – vector of booleans indicating whether the saddle point is stable

	gradient_direction – vector of points indicating the direction of the gradient
between unstable and stable saddle points

	fig_title – a string containing the title of the figure

	xlabel – label for x axis

	figsize – a tuple indicating the size of the figure

	kwargs – you may pass an axis object

:returns a figure object

egttools.plotting.plot_gradients

	
plot_gradients(gradients, fig_title=None, xlabel='frequency of strategy 0', ylabel='gradient of selection (G)', figsize=(7, 5), color='b', linelabel=None, linewidth_gradient=3, marker=None, marker_plot_freq=1, marker_linewidth=3, marker_size=20, marker_facecolor='b', marker_edgecolor='b', roots=None, stability=None, linewidth_edges=3, edgecolors='black', nodesize=100, nodeborder_width=3, arrowstyle='-|>', nb_minor_ticks=2, major_ticks_length=7, minor_ticks_length=4, ticks_width=2, ticks_labels_size=15, ticks_direction='in', ticks_labels_pad=10, ticks_labels_fontweight='bold', axis_labels_fontweight='bold', axis_labels_fontsize=15, ticks_left=True, ticks_right=True, ticks_top=True, ticks_bottom=True, spine_left_linewidth=2, spine_right_linewidth=2, spine_top_linewidth=2, spine_bottom_linewidth=2, ax=None)

	This function plots the gradient of selection for 1-simplexes (only two strategies).

There is the possibility of plotting the stationary points (roots) of the system and their stability,
but it is recommended that you only do this when analysing the replicator equation.

	Parameters

	
	gradients (a numpy array with the gradients to plot.) –

	fig_title (a title for the figure.) –

	xlabel (the label of the x axis.) –

	ylabel (the label of the y axis.) –

	figsize (the dimensions of the figure.) –

	color (the color to use to plot the line.) –

	linelabel (label assigned to the plotted line.) –

	linewidth_gradient (width of the gradient curve.) –

	marker (use a marker to plot the points (by default no marker is shown).) –

	marker_plot_freq (how often to plot a marker (so that there aren't many overlapping).) –

	marker_linewidth (linewidth of the edge of the marker.) –

	marker_size (size of the marker.) –

	marker_facecolor (marker fill color.) –

	marker_edgecolor (marker edge color.) –

	roots (a list of numpy arrays containing the coordinates of the stationary points of the dynamical system.) –

	stability (a list of integers indicating the stability of the roots (-1 - unstable, 0 - saddle, 1 - stable).) –

	linewidth_edges (width of the arrows indicating the direction of the gradients.) –

	edgecolors (color of the arrows indicating the direction of selection.) –

	nodesize (size of the circles representing the roots.) –

	nodeborder_width (width of the border of the circles.) –

	arrowstyle (style of the arrows that represent the direction of selection.) –

	nb_minor_ticks (number of minor ticks to display.) –

	major_ticks_length (length of major ticks.) –

	minor_ticks_length (length of minor ticks.) –

	ticks_width (width of the ticks.) –

	ticks_labels_size (size of the tick labels.) –

	ticks_direction (direction of the ticks ("in" or "out").) –

	ticks_labels_pad (pad for the labels of the ticks.) –

	ticks_labels_fontweight (font weight of the tick labels (e.g., "bold').) –

	axis_labels_fontweight (font weight of the axis labels (e.g., "bold').) –

	axis_labels_fontsize (font size of the axis labels.) –

	ticks_left (indicates whether to display ticks on the left spine.) –

	ticks_right (indicates whether to display ticks on the right spine.) –

	ticks_top (indicates whether to display ticks on the top spine.) –

	ticks_bottom (indicates whether to display ticks on the bottom spine.) –

	spine_left_linewidth (line width of the left spine.) –

	spine_right_linewidth (line width of the right spine.) –

	spine_top_linewidth (line width of the top spine.) –

	spine_bottom_linewidth (line width of the bottom spine.) –

	ax (a matplotlib.pyplot axis object in which this figure will be plot. If None, then a new axis and figure will) – be created.

	Return type

	axis

	Returns

	
	matplotlib.pyplot.axis

	The axis in which the figure has been plot.

egttools.plotting.plot_pairwise_comparison_rule_dynamics_in_simplex

	
plot_pairwise_comparison_rule_dynamics_in_simplex(population_size, beta, payoff_matrix=None, game=None, group_size=2, atol=1e-07, figsize=(10, 8), ax=None)

	Helper function to simplify the plotting of the moran dynamics in a 2 Simplex.

	Parameters

	
	population_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the finite population.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	payoff_matrix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – The square payoff matrix. Group games are still unsupported in the replicator dynamics. This feature will
soon be added.

	game (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractGame]) – Game that should contain a set of payoff matrices

	group_size (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Size of the group. By default, we assume that interactions are pairwise (the group size is 2).

	atol (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – Tolerance to consider a value equal to zero. This is used to check if an edge has random drift. By default
the tolerance is 1e-7.

	figsize (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]) – Size of the figure. This parameter is only used if the ax parameter is not defined.

	ax (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][axis]) – A matplotlib figure axis.

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Simplex2D, Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], int [https://docs.python.org/3/library/functions.html#int]], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], List [https://docs.python.org/3/library/typing.html#typing.List][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], List [https://docs.python.org/3/library/typing.html#typing.List][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], List [https://docs.python.org/3/library/typing.html#typing.List][bool [https://docs.python.org/3/library/functions.html#bool]], AbstractGame, PairwiseComparison]

	Returns

	
	A tuple with the simplex object which can be used to add more features to the plot, the function that

	can be used to calculate gradients and should be passed to Simplex2D.draw_trajectory_from_roots and

	Simplex2D.draw_scatter_shadow, a list of the roots in barycentric coordinates, a list of the roots in

	cartesian coordinates and a list of booleans indicating whether the roots are stable. It also returns the

	game class (this is important, since a new game is created when passing a payoff matrix, and if not returned,

	a reference to the game instance will disappear, and it will produce a segmentation fault). Finally, it also returns

	a reference to the evolver object.

egttools.plotting.plot_replicator_dynamics_in_simplex

	
plot_replicator_dynamics_in_simplex(payoff_matrix, group_size=2, nb_points_simplex=100, nb_of_initial_points_for_root_search=10, atol=1e-07, atol_equal=1e-12, method_find_roots='hybr', atol_stability_pos=0.0001, atol_stability_neg=0.0001, atol_stability_zero=0.0001, figsize=(10, 8), ax=None)

	Helper function to simplify the plotting of the replicator dynamics in a 2 Simplex.

	Parameters

	
	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The square payoff matrix. Group games are still unsupported in the replicator dynamics. This feature will
soon be added.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group

	nb_points_simplex (int [https://docs.python.org/3/library/functions.html#int]) – Number of initial points to draw in the simplex

	nb_of_initial_points_for_root_search (int [https://docs.python.org/3/library/functions.html#int]) – Number of initial points used in the method that searches for the roots of the replicator equation

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance to consider a value equal to zero. This is used to check if an edge has random drift. By default,
the tolerance is 1e-7.

	atol_equal (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance to consider two arrays equal.

	method_find_roots (str [https://docs.python.org/3/library/stdtypes.html#str]) – Method used in scipy.optimize.root

	atol_stability_neg (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance used to determine the stability of the roots. This is used to determine whether an
eigenvalue is negative.

	atol_stability_pos (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance used to determine the stability of the roots. This is used to determine whether an
eigenvalue is positive.

	atol_stability_zero (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance used to determine the stability of the roots. This is used to determine whether an
eigenvalue is zero.

	figsize (Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – Size of the figure. This parameter is only used if the ax parameter is not defined.

	ax (Optional[matplotlib.pyplot.axis]) – A matplotlib figure axis.

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Simplex2D, Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], int [https://docs.python.org/3/library/functions.html#int]], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], List [https://docs.python.org/3/library/typing.html#typing.List][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], List [https://docs.python.org/3/library/typing.html#typing.List][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]]

	Returns

	
	Tuple[Simplex2D, Callable[[numpy.ndarray, int], numpy.ndarray], List[numpy.ndarray], List[numpy.ndarray], List[int]]

	A tuple with the simplex object which can be used to add more features to the plot, the function that

	can be used to calculate gradients and should be passed to Simplex2D.draw_trajectory_from_roots and

	Simplex2D.draw_scatter_shadow, a list of the roots in barycentric coordinates, a list of the roots in

	cartesian coordinates and a list of booleans or integers indicating whether the roots are stable.

egttools.plotting.Simplex2D

	
class Simplex2D(nb_points=1000, discrete=False, size=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Plots a 2-dimensional simplex in a cartesian plane.

This class offers utility methods to plot gradients and equilibrium points on a 2-simplex (triangle).

The plotting is always done on the unit simplex for convenience. At the moment no rotations are
implemented, but we plan to add this feature, so that the triangle can be rotated before the plot.

We discern between continuous and discrete dynamics. The main reason is that this class’ objective
is to plot evolutionary dynamics on a simplex. When we are working with the replicator equation
it is straightforward to calculate all the gradients on the unit simplex. However, when working
with finite populations using the social learning model (social imitation), we are actually working
with a simplex with size equivalent to the population size (so all the dimensions of the simplex must
sum to Z) and we only consider discrete (integer) values inside the simplex (the population may
only have integer individuals). Of course this can be translated into frequencies, which gets us
back to the unit simplex, but it is not so simple to transform any value between 0-1 sampled with
numpy.linspace to a discrete value.

Therefore, for the discrete case, will will sample directly discrete points in barycentric
coordinates and only then, translate them into cartesian cooordinates.

	Parameters

	
	nb_points (int [https://docs.python.org/3/library/functions.html#int]) – number of points for which to calculate the gradients

	discrete (bool [https://docs.python.org/3/library/functions.html#bool]) – indicates whether we are in the continuous or discrete case

	size (int [https://docs.python.org/3/library/functions.html#int]) – if we are in the discrete case, indicates the size of the simplex

See also

egttools.plotting.plot_gradient, egttools.plotting.draw_invasion_diagram, egttools.analytical.replicator_equation, egttools.analytical.StochDynamics, Cite, -----, This

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from egttools.plotting.helpers import (xy_to_barycentric_coordinates, calculate_stationary_points,
 ... calculate_stability)
>>> from egttools.helpers.vectorized import (vectorized_replicator_equation,
 ... vectorized_barycentric_to_xy_coordinates)
>>> from egttools.analytical import replicator_equation
>>> simplex = Simplex2D()
>>> payoffs = np.array([[1, 0, 0],
 ... [0, 2, 0],
 ... [0, 0, 3]])
>>> v = np.asarray(xy_to_barycentric_coordinates(simplex.X, simplex.Y, simplex.corners))
>>> results = vectorized_replicator_equation(v, payoffs)
>>> xy_results = vectorized_barycentric_to_xy_coordinates(results, simplex.corners)
>>> Ux = xy_results[:, :, 0].astype(np.float64)
>>> Uy = xy_results[:, :, 1].astype(np.float64)
>>> calculate_gradients = lambda u: replicator_equation(u, payoffs)
>>> roots, roots_xy = calculate_stationary_points(simplex.trimesh.x, simplex.trimesh.y,
 ... simplex.corners, calculate_gradients)
>>> stability = calculate_stability(roots, calculate_gradients)
>>> type_labels = ['A', 'B', 'C']
>>> fig, ax = plt.subplots(figsize=(10,8))
>>> plot = (simplex.add_axis(ax=ax)
 apply_simplex_boundaries_to_gradients(Ux, Uy)
 draw_triangle()
 draw_gradients(zorder=0)
 add_colorbar()
 draw_stationary_points(roots_xy, stability)
 add_vertex_labels(type_labels)
 draw_trajectory_from_roots(lambda u, t: replicator_equation(u, payoffs),
 ... roots,
 ... stability,
 ... trajectory_length=15,
 ... linewidth=1,
 ... step=0.01,
 ... color='k', draw_arrow=True, arrowdirection='right',
 ... arrowsize=30, zorder=4, arrowstyle='fancy')
 draw_scatter_shadow(lambda u, t: replicator_equation(u, payoffs), 300, color='gray',
 ... marker='.', s=0.1, zorder=0)

[image: ../_images/simplex_example_infinite_pop_1.png]
>>> plot = (simplex.add_axis(ax=ax)
 apply_simplex_boundaries_to_gradients(Ux, Uy)
 draw_triangle()
 draw_stationary_points(roots_xy, stability)
 add_vertex_labels(type_labels)
 draw_trajectory_from_roots(lambda u, t: replicator_equation(u, payoffs),
 ... roots,
 ... stability,
 ... trajectory_length=15,
 ... linewidth=1,
 ... step=0.01,
 ... color='k', draw_arrow=True, arrowdirection='right',
 ... arrowsize=30, zorder=4, arrowstyle='fancy')
 draw_scatter_shadow(lambda u, t: replicator_equation(u, payoffs), 300, color='gray',
 ... marker='.', s=0.1, zorder=0)

[image: ../_images/simplex_example_infinite_pop_2.png]
Methods

	add_axis

	Creates or stores a new axis inside the class.

	add_colorbar

	Adds a color bar to indicate the meaning of the colors of the plotted gradients.

	add_edges_with_random_drift

	Adds information to the class about which edges have random drift.

	add_vertex_labels

	Adds labels to the vertices of the triangle that represents the 2-simplex.

	apply_simplex_boundaries_to_gradients

	Applies boundaries of the triangle to a list of gradient values over the cartesian grid.

	draw_gradients

	Draws the gradients inside the unit simplex using a streamplot.

	draw_scatter_shadow

	Draws a series of point which follows trajectories in the simplex starting from random points.

	draw_stationary_distribution

	Draws the stationary distribution inside the simplex using a matplotlib.pyplot.tripcolor

	draw_stationary_points

	Draws the black circles for stable points and white circles for unstable ones.

	draw_trajectories

	Draws trajectories inside the unit simplex starting from random initial points.

	draw_trajectory_from_points

	Draws trajectories inside the unit simplex starting from the indicated points.

	draw_trajectory_from_roots

	Draws trajectories inside the unit simplex starting from the stationary points.

	draw_trajectory_from_vector

	

	draw_triangle

	Draws the borders of a triangle enclosing the 2-simplex.

	get_figure_and_axis

	Returns the stored figure and axis.

Attributes

	corners

	

	refiner

	

	side_slope

	

	top_corner

	

	triangle

	

	trimesh

	

	
__init__(nb_points=1000, discrete=False, size=None)

	Plots a 2-dimensional simplex in a cartesian plane.

This class offers utility methods to plot gradients and equilibrium points on a 2-simplex (triangle).

The plotting is always done on the unit simplex for convenience. At the moment no rotations are
implemented, but we plan to add this feature, so that the triangle can be rotated before the plot.

We discern between continuous and discrete dynamics. The main reason is that this class’ objective
is to plot evolutionary dynamics on a simplex. When we are working with the replicator equation
it is straightforward to calculate all the gradients on the unit simplex. However, when working
with finite populations using the social learning model (social imitation), we are actually working
with a simplex with size equivalent to the population size (so all the dimensions of the simplex must
sum to Z) and we only consider discrete (integer) values inside the simplex (the population may
only have integer individuals). Of course this can be translated into frequencies, which gets us
back to the unit simplex, but it is not so simple to transform any value between 0-1 sampled with
numpy.linspace to a discrete value.

Therefore, for the discrete case, will will sample directly discrete points in barycentric
coordinates and only then, translate them into cartesian cooordinates.

	Parameters

	
	nb_points (int [https://docs.python.org/3/library/functions.html#int]) – number of points for which to calculate the gradients

	discrete (bool [https://docs.python.org/3/library/functions.html#bool]) – indicates whether we are in the continuous or discrete case

	size (int [https://docs.python.org/3/library/functions.html#int]) – if we are in the discrete case, indicates the size of the simplex

See also

egttools.plotting.plot_gradient, egttools.plotting.draw_invasion_diagram, egttools.analytical.replicator_equation, egttools.analytical.StochDynamics, Cite, -----, This

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from egttools.plotting.helpers import (xy_to_barycentric_coordinates, calculate_stationary_points,
 ... calculate_stability)
>>> from egttools.helpers.vectorized import (vectorized_replicator_equation,
 ... vectorized_barycentric_to_xy_coordinates)
>>> from egttools.analytical import replicator_equation
>>> simplex = Simplex2D()
>>> payoffs = np.array([[1, 0, 0],
 ... [0, 2, 0],
 ... [0, 0, 3]])
>>> v = np.asarray(xy_to_barycentric_coordinates(simplex.X, simplex.Y, simplex.corners))
>>> results = vectorized_replicator_equation(v, payoffs)
>>> xy_results = vectorized_barycentric_to_xy_coordinates(results, simplex.corners)
>>> Ux = xy_results[:, :, 0].astype(np.float64)
>>> Uy = xy_results[:, :, 1].astype(np.float64)
>>> calculate_gradients = lambda u: replicator_equation(u, payoffs)
>>> roots, roots_xy = calculate_stationary_points(simplex.trimesh.x, simplex.trimesh.y,
 ... simplex.corners, calculate_gradients)
>>> stability = calculate_stability(roots, calculate_gradients)
>>> type_labels = ['A', 'B', 'C']
>>> fig, ax = plt.subplots(figsize=(10,8))
>>> plot = (simplex.add_axis(ax=ax)
 apply_simplex_boundaries_to_gradients(Ux, Uy)
 draw_triangle()
 draw_gradients(zorder=0)
 add_colorbar()
 draw_stationary_points(roots_xy, stability)
 add_vertex_labels(type_labels)
 draw_trajectory_from_roots(lambda u, t: replicator_equation(u, payoffs),
 ... roots,
 ... stability,
 ... trajectory_length=15,
 ... linewidth=1,
 ... step=0.01,
 ... color='k', draw_arrow=True, arrowdirection='right',
 ... arrowsize=30, zorder=4, arrowstyle='fancy')
 draw_scatter_shadow(lambda u, t: replicator_equation(u, payoffs), 300, color='gray',
 ... marker='.', s=0.1, zorder=0)

[image: ../_images/simplex_example_infinite_pop_1.png]
>>> plot = (simplex.add_axis(ax=ax)
 apply_simplex_boundaries_to_gradients(Ux, Uy)
 draw_triangle()
 draw_stationary_points(roots_xy, stability)
 add_vertex_labels(type_labels)
 draw_trajectory_from_roots(lambda u, t: replicator_equation(u, payoffs),
 ... roots,
 ... stability,
 ... trajectory_length=15,
 ... linewidth=1,
 ... step=0.01,
 ... color='k', draw_arrow=True, arrowdirection='right',
 ... arrowsize=30, zorder=4, arrowstyle='fancy')
 draw_scatter_shadow(lambda u, t: replicator_equation(u, payoffs), 300, color='gray',
 ... marker='.', s=0.1, zorder=0)

[image: ../_images/simplex_example_infinite_pop_2.png]

	
add_axis(figsize=(10, 8), ax=None)

	Creates or stores a new axis inside the class.

	Parameters

	
	figsize (Optional[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]) – The size of the figure. This argument is only used if no ax is given.

	ax (Optional[matplotlib.pyplot.axis]) – If given, the axis will be stored inside the object. Otherwise, a new axis will be created.

	Returns

	The class object.

	Return type

	Simplex2D

	
add_colorbar(aspect=10, anchor=(-0.5, 0.5), panchor=(0, 0), shrink=0.6, label='gradient of selection', label_rotation=270, label_fontsize=16, labelpad=20)

	Adds a color bar to indicate the meaning of the colors of the plotted gradients.
This should only be used if the gradients were plotted and the colors have been drawn in function
of the strength of the gradient.

	Parameters

	
	aspect (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Aspect ration of the color bar.

	anchor (Optional[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]) – Anchor point for the color bar.

	panchor (Optional[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]) –

	shrink (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Ration for shrinking the color bar.

	label (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Label for the color bar.

	label_rotation (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Rotation of the label.

	label_fontsize (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Font size of the label.

	labelpad (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – How much padding should be added to the label.

	Returns

	A reference to the class object.

	Return type

	Simplex2D

	
add_edges_with_random_drift(random_drift_edges)

	Adds information to the class about which edges have random drift.

This will be used to avoid plotting a lot equilibria alongside an edge.

	Parameters

	random_drift_edges (List[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]) – A list of tuples which indicate the (undirected) edges in which there is random drift.

	Returns

	The class object.

	Return type

	Simplex2D

	
add_vertex_labels(labels, epsilon_bottom=0.05, epsilon_top=0.05, fontsize=16, horizontalalignment='center')

	Adds labels to the vertices of the triangle that represents the 2-simplex.

	Parameters

	
	labels (Union[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A tuple or a list containing 3 strings that give name to the vertices of the triangle. The order is
bottom left corner, top corner, bottom right corner.

	epsilon_bottom (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – How much separation should the label have from the bottom vertices

	epsilon_top (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – How much separation should the label have from the top vertex.

	fontsize (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Font size for the labels.

	horizontalalignment (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Horizontal alignment for the label text.

	Returns

	A reference to the current object.

	Return type

	Simplex2D

	
apply_simplex_boundaries_to_gradients(u, v)

	Applies boundaries of the triangle to a list of gradient values over the cartesian grid.

The boundaries are applied using the X Y grid defined in the instantiation of the class.

	Parameters

	
	u (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The X component of the gradients.

	v (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The Y component of the gradients

	Returns

	A reference to the class object.

	Return type

	Simplex2D

	
draw_gradients(arrowsize=2, arrowstyle='fancy', color=None, density=1, linewidth=1.5, cmap='viridis', zorder=0)

	Draws the gradients inside the unit simplex using a streamplot.

	Parameters

	
	arrowsize (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The size of the arrows of the gradients

	arrowstyle (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The style of the arrows. See matplotlib arrowstyles.

	color (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – The color of the arrows. If no color is given, it will be generated as a function of the gradients.

	density (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The density of arrows (how many arrows) to plot.

	linewidth (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The width of the arrows.

	cmap (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], matplotlib.colors.Colormap]]) – The color map to be used.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which the gradients should appear in the plot (above or below other elements).

	Returns

	A reference to the class object.

	Return type

	Simplex2D

	
draw_scatter_shadow(f, nb_trajectories, trajectory_length=15, step=0.1, s=0.1, color='whitesmoke', marker='.', zorder=0)

	Draws a series of point which follows trajectories in the simplex starting from random points.

The visual effect is as if there were shadows in the direction of the gradient.

	Parameters

	
	f (Callable[[np.ndarray, int [https://docs.python.org/3/library/functions.html#int]], np.ndarray]) – Function that can calculate the gradient at any point in the simplex.

	nb_trajectories (int [https://docs.python.org/3/library/functions.html#int]) – Number of trajectories to draw.

	trajectory_length (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Length of the trajectory. This is used to calculate the amount of points odeint should calculate.

	step (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The step size in time to get to the maximum trajectory length. Together with trajectory_length
this indicates the amount of points odeint should calculate.

	s (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – Size of the points.

	color (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – The color of the points of the trajectory.

	marker (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Style of the points to be drawn. See matplotlib markers.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which this plot should appear in the figure (above or bellow other plots).

	Returns

	A reference to the current object.

	Return type

	Simplex2D

	
draw_stationary_distribution(stationary_distribution, cmap='binary', shading='gouraud', alpha=1.0, edgecolors='grey', vmin=None, vmax=None, zorder=0, colorbar=True, aspect=10, anchor=(-0.5, 0.5), panchor=(0, 0), shrink=0.6, label='stationary distribution', label_rotation=270, label_fontsize=16, labelpad=20)

	Draws the stationary distribution inside the simplex using a matplotlib.pyplot.tripcolor

	Parameters

	
	stationary_distribution (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array containing the values of the stationary distribution. The order of these points
must follow the order given by egttools.sample_simplex when iterating from 0-nb_states.

	cmap (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], matplotlib.colors.Colormap]]) – Color map to be used.

	shading (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Type of shading to be used in the plot. Can be either “gouraud” or “flat”.

	alpha (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The level of transparency.

	edgecolors (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The colors of the edges of the triangular grid.

	vmin (Optional[flaot]) – The minimum value to take into account for the color range to plot.

	vmax (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The maximum value to take into account for the color range to plot.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which this plot should appear in the figure (above or bellow other plots).

	colorbar (Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = True) – Indicates whether to add a color bar to the plot.

	aspect (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The aspect ration of the color bar.

	anchor (Optional[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]) – The anchor of the color bar.

	panchor (Optional[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]) – The panchor of the colorbar

	shrink (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Ratio of shrinking the color bar.

	label (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Label of the color bar.

	label_rotation (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Rotation of the label.

	label_fontsize (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Font size of the label.

	labelpad (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – How much padding should be added to the label.

	Returns

	A reference to the current object

	Return type

	Simplex2D

	
draw_stationary_points(roots, stability, zorder=5, linewidth=3, atol=1e-07)

	Draws the black circles for stable points and white circles for unstable ones.

	Parameters

	
	roots (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]]) – A list of arrays (or tuples) containing the cartesian coordinates of the roots.

	stability (Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][bool [https://docs.python.org/3/library/functions.html#bool]], List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]]) – A list of boolean or integer values indicating whether the root is stable. If there are integer values
-1 - unstable, 0 - saddle, 1 - stable.

	zorder (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Indicates in which order these points should appear in the figure (above or below other plots).

	linewidth (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – Width of the border of the circles that represents the roots.

	atol (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – Tolerance to consider a value equal to 0. Used to check if a point is on an edge.

	Returns

	A reference to the class object.

	Return type

	Simplex2D

	
draw_trajectories(f, nb_trajectories, trajectory_length=15, step=0.01, color='whitesmoke', ms=0.5, zorder=0)

	Draws trajectories inside the unit simplex starting from random initial points.

	Parameters

	
	f (Callable[[np.ndarray, int [https://docs.python.org/3/library/functions.html#int]], np.ndarray]) – Function that can calculate the gradient at any point in the simplex.

	nb_trajectories (int [https://docs.python.org/3/library/functions.html#int]) – Number of trajectories to draw.

	trajectory_length (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Length of the trajectory. This is used to calculate the amount of points odeint should calculate.

	step (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The step size in time to get to the maximum trajectory length. Together with trajectory_length
this indicates the amount of points odeint should calculate.

	color (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – The color of the points of the trajectory.

	ms (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The size of the points.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which this plot should appear in the figure (above or bellow other plots).

	Returns

	A reference to the current object.

	Return type

	Simplex2D

	
draw_trajectory_from_points(f, points, trajectory_length=15, step=0.1, color='k', linewidth=0.5, zorder=0, draw_arrow=False, arrowstyle='fancy', arrowsize=50, position=None, arrowdirection='right')

	Draws trajectories inside the unit simplex starting from the indicated points.

	Parameters

	
	f (Callable[[np.ndarray, int [https://docs.python.org/3/library/functions.html#int]], np.ndarray]) – Function that can calculate the gradient at any point in the simplex.

	points (List[np.ndarray[np.float64[3,m]]) – A list of points in barycentric coordinates from which the trajectories should start.

	trajectory_length (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Length of the trajectory. This is used to calculate the amount of points odeint should calculate.

	step (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The step size in time to get to the maximum trajectory length. Together with trajectory_length
this indicates the amount of points odeint should calculate.

	color (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – The color of the points of the trajectory.

	linewidth (Optional[float [https://docs.python.org/3/library/functions.html#float]] = 0.5) – Width of the line to be plot.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which this plot should appear in the figure (above or bellow other plots).

	draw_arrow (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Indicates whether to draw an arrow along the trajectory.

	arrowstyle (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Indicates the style of the arrow to be plotted.

	arrowsize (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The size of the arrow.

	position (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Where should the arrow be pltoted.

	arrowdirection (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Indicates whether the arrow should be plotted in the direction of the advancing trajectory (right) or
the opposite.

	Returns

	A reference to the current object.

	Return type

	Simplex2D

	
draw_trajectory_from_roots(f, roots, stability, trajectory_length=15, step=0.1, perturbation=0.01, color='k', linewidth=0.5, zorder=0, draw_arrow=False, arrowstyle='fancy', arrowsize=50, position=None, arrowdirection='right', atol=1e-07)

	Draws trajectories inside the unit simplex starting from the stationary points.

	Parameters

	
	f (Callable[[np.ndarray, int [https://docs.python.org/3/library/functions.html#int]], np.ndarray]) – Function that can calculate the gradient at any point in the simplex.

	roots (List[np.ndarray[np.float64[3,m]]) – A list of points in barycentric coordinates from which the trajectories should start.

	stability (List[bool [https://docs.python.org/3/library/functions.html#bool]]) – Indicates whether the root is a stable or unstable point.

	trajectory_length (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Length of the trajectory. This is used to calculate the amount of points odeint should calculate.

	step (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The step size in time to get to the maximum trajectory length. Together with trajectory_length
this indicates the amount of points odeint should calculate.

	perturbation (Optional[Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]]) – Indicates how much perturbation should be applied to the root to start drawing the trajectory.
If no perturbation is applied, since the gradient is 0, the system will never leave the root.

	color (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – The color of the points of the trajectory.

	linewidth (Optional[float [https://docs.python.org/3/library/functions.html#float]] = 0.5) – Width of the line to be plot.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which this plot should appear in the figure (above or bellow other plots).

	draw_arrow (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Indicates whether to draw an arrow along the trajectory.

	arrowstyle (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Indicates the style of the arrow to be plotted.

	arrowsize (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The size of the arrow.

	position (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Where should the arrow be pltoted.

	arrowdirection (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Indicates whether the arrow should be plotted in the direction of the advancing trajectory (right) or
the opposite.

	atol (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Tolerance to consider a value equal to 0. Used to check if a point is on an edge of the simplex.

	Returns

	A reference to the current object.

	Return type

	Simplex2D

	
draw_trajectory_from_vector(trajectory, color='k', linewidth=0.5, zorder=0)

	

	
draw_triangle(color='k', linewidth=2, linewidth_random_drift=4)

	Draws the borders of a triangle enclosing the 2-simplex.

	Parameters

	
	color (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The color of the borders of the triangle.

	linewidth (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The width of the borders of the triangle.

	linewidth_random_drift (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The width of the dashed line that represents the edges with random drift.

	Returns

	A refernece to the class object.

	Return type

	Simplex2D

	
get_figure_and_axis()

	Returns the stored figure and axis.

	Returns

	The figure and axis stored in the current object.

	Return type

	Tuple[matplotlib.pyplot.figure, matplotlib.pyplot.axis]

	
corners = array([[0. , 0.], [0.5 , 0.8660254], [1. , 0.]])

	

	
refiner = <matplotlib.tri.trirefine.UniformTriRefiner object>

	

	
side_slope = 1.7320508075688772

	

	
top_corner = 0.8660254037844386

	

	
triangle = <matplotlib.tri.triangulation.Triangulation object>

	

	
trimesh = <matplotlib.tri.triangulation.Triangulation object>

	

egttools.plotting.helpers

Helper functions for producing plots on simplexes

Functions

	add_arrow

	add an arrow to a line.

	barycentric_to_xy_coordinates

	Transforms barycentric into cartesian coordinates.

	calculate_nb_states

	Calculates the number of states (combinations) of the members of a group in a subgroup.

	calculate_stability

	Calculates the stability of the roots.

	calculate_stationary_points

	Finds the roots of f (the points where the gradient is 0), given a number of points.

	check_if_point_in_unit_simplex

	Checks if a point (in barycentric coordinates) is inside the unit simplex.

	find_roots_in_discrete_barycentric_coordinates

	Searches for the roots inside the simplex and returns them in barycentric coordinates.

	find_where_point_is_in_simplex

	Finds in which part of the 2D simplex the point is.

	perturb_state

	Produces a number of points in the simplex close to the state.

	perturb_state_discrete

	Produces a number of points in the simplex close to the state.

	root

	Find a root of a vector function.

	sample_simplex

	Transforms a state index into a vector.

	simplex_iterator

	Systematically iterates through a lattice of points on the 2-simplex.

	xy_to_barycentric_coordinates

	Transforms cartesian into barycentric coordinates.

egttools.plotting.helpers.add_arrow

	
add_arrow(line, position=None, direction='right', size=15, color=None, arrowstyle='-|>', zorder=0)

	add an arrow to a line.

line: Line2D object
position: x-position of the arrow. If None, mean of xdata is taken
direction: ‘left’ or ‘right’
size: size of the arrow in fontsize points
color: if None, line color is taken.

egttools.plotting.helpers.barycentric_to_xy_coordinates

	
barycentric_to_xy_coordinates(point_barycentric, corners)

	Transforms barycentric into cartesian coordinates.

	Parameters

	
	point_barycentric (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array containing the 3 barycentric coordinates.

	corners (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An matrix containing the cartesian coordinates of the corners of the triangle that represents the 2-simplex.

	Returns

	An array containing the cartesian coordinates of the input point.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

egttools.plotting.helpers.calculate_nb_states

	
calculate_nb_states(group_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → object [https://docs.python.org/3/library/functions.html#object]

	Calculates the number of states (combinations) of the members of a group in a subgroup.

It can be used to calculate the maximum number of states in a discrete simplex.

The implementation of this method follows the stars and bars algorithm (see Wikipedia).

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group (maximum number of players/elements that can adopt each possible strategy).

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies that can be assigned to players.

	Returns

	Number of states (possible combinations of strategies and players).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.numerical.calculate_state, egttools.numerical.sample_simplex

egttools.plotting.helpers.calculate_stability

	
calculate_stability(roots, f)

	Calculates the stability of the roots. It will return a list indicating whether each root
is or not stable.

	Parameters

	
	roots (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A list or arrays which contain the barycentric coordinates of the roots.

	f (Callable[[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A function which computes the gradient at any point in the simplex.

	Returns

	A list of booleans indicating whether each root is or not stable.

	Return type

	List[bool [https://docs.python.org/3/library/functions.html#bool]]

egttools.plotting.helpers.calculate_stationary_points

	
calculate_stationary_points(x, y, corners, f, border=5, delta=1e-12, atol=1e-07)

	Finds the roots of f (the points where the gradient is 0), given a number of points.

	Parameters

	
	x (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – x (cartesian) coordinates of the points for which to look for the gradients.

	y (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – y (cartesian) coordinates of the points for which to look for the gradients.

	corners (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A matrix containing the cartesian coordinates of the vertices of the triangle that forms the 2-simplex.

	f (Callable[[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A function that calculates the gradient at any point in the simplex.

	border (int [https://docs.python.org/3/library/functions.html#int]) – Indicates how close to the simplex borders should we look for the gradients. This allows to avoid
boundary problems.

	delta (float [https://docs.python.org/3/library/functions.html#float]) – tolerance for considering points outside the simplex.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – tolerance for considering that two roots are equal.

	Returns

	A list with the barycentric coordinates of all the roots that were found and another list with
the cartesian coordinates.

	Return type

	Tuple[List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]]

egttools.plotting.helpers.check_if_point_in_unit_simplex

	
check_if_point_in_unit_simplex(point, delta=1e-12)

	Checks if a point (in barycentric coordinates) is inside the unit simplex.

	Parameters

	
	point (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The barycentric coordinates of the point.

	delta (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance to consider a point outside the unit simplex.

	Returns

	Whether the point is inside the unit simplex.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

egttools.plotting.helpers.find_roots_in_discrete_barycentric_coordinates

	
find_roots_in_discrete_barycentric_coordinates(f, simplex_size, nb_edge_points=None, nb_interior_points=1000, delta=1e-12, atol=0.001)

	Searches for the roots inside the simplex and returns them in barycentric coordinates.

	Parameters

	
	f (Callable[[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A function that calculates the gradient of any point inside the simplex.

	simplex_size (int [https://docs.python.org/3/library/functions.html#int]) – Discrete size of the edges of the simplex. This should correspond to the size of the finite population
in Moran dynamics.

	nb_edge_points (int [https://docs.python.org/3/library/functions.html#int]) – Can be used to explore more points than the existing simplex size.

	nb_interior_points (int [https://docs.python.org/3/library/functions.html#int]) – Number of points to explore inside the simplex.

	delta (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance to consider a point outside the unit simplex.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance to consider two roots to be equal.

	Returns

	A list with the barycentric coordinates of the roots.

	Return type

	List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

See also

egttools.plotting.helpers.calculate_stationary_points

egttools.plotting.helpers.find_where_point_is_in_simplex

	
find_where_point_is_in_simplex(point)

	Finds in which part of the 2D simplex the point is.

This function will return:
0 -> if the point is a vertex
1 -> if the point in an edge
2 -> if the point is in the interior of the simplex

	Parameters

	point (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The barycentric coordinates of the point

	Returns

	An integer which indicates where the point is in the simplex and
the index of the non-zero entries.

	Return type

	Tuple[int [https://docs.python.org/3/library/functions.html#int], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

egttools.plotting.helpers.perturb_state

	
perturb_state(state, perturbation=0.01)

	Produces a number of points in the simplex close to the state.

If the sate is a vertex or in an edge, the perturbation is only made
across the edges (we don’t look for points in the interior of the simplex).

	Parameters

	
	state (Union[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – Barycentric coordinates of a point inside the simplex.

	perturbation (float [https://docs.python.org/3/library/functions.html#float]) – The amount of perturbation to apply to the point.

	Returns

	A list of points (in barycentric coordinates) which are close to the state in the simplex.

	Return type

	List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

egttools.plotting.helpers.perturb_state_discrete

	
perturb_state_discrete(state, size, perturbation=1)

	Produces a number of points in the simplex close to the state.

If the sate is a vertex or in an edge, the perturbation is only made
across the edges (we don’t look for points in the interior of the simplex).

	Parameters

	
	state (Union[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – The barycentric coordinates of a point inside the simplex.

	size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the edges of the simplex. This should coincide with the size of the finite population
in Moran dynamics.

	perturbation (int [https://docs.python.org/3/library/functions.html#int]) – The amount of perturbation to apply to the point.

	Returns

	A list of points (in barycentric coordinates) which are close to the state in the simplex.

	Return type

	List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

egttools.plotting.helpers.root

	
root(fun, x0, args=(), method='hybr', jac=None, tol=None, callback=None, options=None)

	Find a root of a vector function.

	Parameters

	
	fun (callable) – A vector function to find a root of.

	x0 (ndarray) – Initial guess.

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Extra arguments passed to the objective function and its Jacobian.

	method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Type of solver. Should be one of

	’hybr’ (see here)

	’lm’ (see here)

	’broyden1’ (see here)

	’broyden2’ (see here)

	’anderson’ (see here)

	’linearmixing’ (see here)

	’diagbroyden’ (see here)

	’excitingmixing’ (see here)

	’krylov’ (see here)

	’df-sane’ (see here)

	jac (bool [https://docs.python.org/3/library/functions.html#bool] or callable, optional) – If jac is a Boolean and is True, fun is assumed to return the
value of Jacobian along with the objective function. If False, the
Jacobian will be estimated numerically.
jac can also be a callable returning the Jacobian of fun. In
this case, it must accept the same arguments as fun.

	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – Tolerance for termination. For detailed control, use solver-specific
options.

	callback (function, optional) – Optional callback function. It is called on every iteration as
callback(x, f) where x is the current solution and f
the corresponding residual. For all methods but ‘hybr’ and ‘lm’.

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dictionary of solver options. E.g., xtol or maxiter, see
show_options() for details.

	Returns

	sol – The solution represented as a OptimizeResult object.
Important attributes are: x the solution array, success a
Boolean flag indicating if the algorithm exited successfully and
message which describes the cause of the termination. See
OptimizeResult for a description of other attributes.

	Return type

	OptimizeResult

See also

	show_options
	Additional options accepted by the solvers

Notes

This section describes the available solvers that can be selected by the
‘method’ parameter. The default method is hybr.

Method hybr uses a modification of the Powell hybrid method as
implemented in MINPACK 1.

Method lm solves the system of nonlinear equations in a least squares
sense using a modification of the Levenberg-Marquardt algorithm as
implemented in MINPACK 1.

Method df-sane is a derivative-free spectral method. 3

Methods broyden1, broyden2, anderson, linearmixing,
diagbroyden, excitingmixing, krylov are inexact Newton methods,
with backtracking or full line searches 2. Each method corresponds
to a particular Jacobian approximations.

	Method broyden1 uses Broyden’s first Jacobian approximation, it is
known as Broyden’s good method.

	Method broyden2 uses Broyden’s second Jacobian approximation, it
is known as Broyden’s bad method.

	Method anderson uses (extended) Anderson mixing.

	Method Krylov uses Krylov approximation for inverse Jacobian. It
is suitable for large-scale problem.

	Method diagbroyden uses diagonal Broyden Jacobian approximation.

	Method linearmixing uses a scalar Jacobian approximation.

	Method excitingmixing uses a tuned diagonal Jacobian
approximation.

Warning

The algorithms implemented for methods diagbroyden,
linearmixing and excitingmixing may be useful for specific
problems, but whether they will work may depend strongly on the
problem.

New in version 0.11.0.

References

	1(1,2)

	More, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom.
1980. User Guide for MINPACK-1.

	2

	C. T. Kelley. 1995. Iterative Methods for Linear and Nonlinear
Equations. Society for Industrial and Applied Mathematics.
<https://archive.siam.org/books/kelley/fr16/>

	3

	
	La Cruz, J.M. Martinez, M. Raydan. Math. Comp. 75, 1429 (2006).

Examples

The following functions define a system of nonlinear equations and its
jacobian.

>>> def fun(x):
... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0,
... 0.5 * (x[1] - x[0])**3 + x[1]]

>>> def jac(x):
... return np.array([[1 + 1.5 * (x[0] - x[1])**2,
... -1.5 * (x[0] - x[1])**2],
... [-1.5 * (x[1] - x[0])**2,
... 1 + 1.5 * (x[1] - x[0])**2]])

A solution can be obtained as follows.

>>> from scipy import optimize
>>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr')
>>> sol.x
array([0.8411639, 0.1588361])

Large problem

Suppose that we needed to solve the following integrodifferential
equation on the square \([0,1]\times[0,1]\):

\[\nabla^2 P = 10 \left(\int_0^1\int_0^1\cosh(P)\,dx\,dy\right)^2\]

with \(P(x,1) = 1\) and \(P=0\) elsewhere on the boundary of
the square.

The solution can be found using the method='krylov' solver:

>>> from scipy import optimize
>>> # parameters
>>> nx, ny = 75, 75
>>> hx, hy = 1./(nx-1), 1./(ny-1)

>>> P_left, P_right = 0, 0
>>> P_top, P_bottom = 1, 0

>>> def residual(P):
... d2x = np.zeros_like(P)
... d2y = np.zeros_like(P)
...
... d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx
... d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
... d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx
...
... d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
... d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy
... d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy
...
... return d2x + d2y - 10*np.cosh(P).mean()**2

>>> guess = np.zeros((nx, ny), float)
>>> sol = optimize.root(residual, guess, method='krylov')
>>> print('Residual: %g' % abs(residual(sol.x)).max())
Residual: 5.7972e-06 # may vary

>>> import matplotlib.pyplot as plt
>>> x, y = np.mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
>>> plt.pcolormesh(x, y, sol.x, shading='gouraud')
>>> plt.colorbar()
>>> plt.show()

egttools.plotting.helpers.sample_simplex

	
sample_simplex(index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]

	Transforms a state index into a vector.

	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – State index.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies.

	Returns

	Vector with the sampled state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.calculate_nb_states

egttools.plotting.helpers.simplex_iterator

	
simplex_iterator(scale, boundary=True)

	Systematically iterates through a lattice of points on the 2-simplex.

	Parameters

	
	scale (int [https://docs.python.org/3/library/functions.html#int]) – The normalized scale of the simplex, i.e. N such that points (x,y,z)
satisify x + y + z == N

	boundary (bool [https://docs.python.org/3/library/functions.html#bool]) – Include the boundary points (tuples where at least one
coordinate is zero)

	Yields

	
	Tuple[int, int, int] – 3-tuples, There are binom(n+2, 2) points (the triangular
number for scale + 1, less 3*(scale+1) if boundary=False

	Citing

	——

	This function has been copied from (https://github.com/marcharper/python-ternary/blob/master/ternary/helpers.py)

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]

egttools.plotting.helpers.xy_to_barycentric_coordinates

	
xy_to_barycentric_coordinates(x, y, corners)

	Transforms cartesian into barycentric coordinates.

	Parameters

	
	x (Union[float [https://docs.python.org/3/library/functions.html#float], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – first component of the cartesian coordinates

	y (Union[float [https://docs.python.org/3/library/functions.html#float], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – second component of the cartesian coordinates

	corners (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a list or a vector containing the coordinates of the corners

	Returns

	The transformmation of the coordinates into barycentric.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Examples

>>> from egttools.plotting import Simplex2D
>>> simplex = Simplex2D()
>>> cartesian_coords = np.array([0.2, 0.])
>>> xy_to_barycentric_coordinates(cartesian_coords[0], cartesian_coords[1], simplex.corners)
array([0.2, 0.])

egttools.plotting.indicators

Helper function to visualize evolutionary dynamics

Functions

	draw_invasion_diagram

	Draws the markov chain for a given stationary distribution of monomorphic states.

	plot_gradient

	Creates a figure plotting the gradient of selection together with the saddle points, and the gradient arrows.

	plot_gradients

	This function plots the gradient of selection for 1-simplexes (only two strategies).

Classes

	AutoMinorLocator

	Dynamically find minor tick positions based on the positions of major ticks.

egttools.plotting.indicators.draw_invasion_diagram

	
draw_invasion_diagram(strategies, drift, fixation_probabilities, stationary_distribution, atol=0.0001, max_displayed_label_letters=4, min_strategy_frequency=-1, node_size=4000, font_size_node_labels=18, font_size_edge_labels=14, font_size_sd_labels=12, display_node_labels=True, display_edge_labels=True, display_sd_labels=True, node_labels_top_separation=0.15, node_labels_bottom_separation=-0.2, edge_width=2, node_linewidth=0, node_edgecolors=None, figsize=(10, 10), dpi=150, colors=None, ax=None)

	Draws the markov chain for a given stationary distribution of monomorphic states.

	Parameters

	
	strategies (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Strategies and array of string labels for each strategy present in the population.

	drift (float [https://docs.python.org/3/library/functions.html#float]) – drift = 1/pop_size

	fixation_probabilities (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][float [https://docs.python.org/3/library/functions.html#float], 2]) – A matrix specifying the fixation probabilities.

	stationary_distribution (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][float [https://docs.python.org/3/library/functions.html#float], 1]) – An array containing the stationary distribution (probability of each state in the system).

	atol (float [https://docs.python.org/3/library/functions.html#float]) – The tolerance for considering a value equal to 1 (to detect wheter there is random drift). Default is 1e-4.

	max_displayed_label_letters (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of letters of the strategy labels contained in the strategies List to
be displayed.

	min_strategy_frequency (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Minimum frequency of a strategy (its probability given by the stationary distribution)
to be shown in the Graph.

	font_size_node_labels (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Font size of the labels displayed inside each node.

	font_size_edge_labels (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Font size of the labels displayed in each edge (which contain the fixation probabilities).

	font_size_sd_labels (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Font size of the labels displayed beside each node containing the value of the stationary distribution.

	display_node_labels (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Indicates wether the node labels should be displayed.

	display_edge_labels (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Indicates wether the edge labels should be displayed.

	display_sd_labels (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Indicates whether the stationary distribution labels should be displayed.

	node_labels_top_separation (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Gives the separation of node label for nodes with positive y (y > 0)

	node_labels_bottom_separation (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Gives the separation of node label for nodes with negative y (y <= 0)

	edge_width (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Width of the edge line.

	node_linewidth (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Line width of node border

	node_edgecolors (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Colors of node borders

	figsize (Optional[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]) – Size of the default figure (Only used if ax is not specified).

	dpi (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Pixel density of the default plot

	node_size (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Size of the nodes of the Graph to be plotted

	colors (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list with the colors used to plot the nodes of the graph.

	ax (Optional[plt.axis]) – Axis on which to draw the graph.

	Returns

	The graph depicting the Markov chain which represents the invasion dynamics.

	Return type

	networkx.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]

Notes

If there are too many strategies, this function may not only take a lot of time to generate the Graph, but
it will also not be easy to visualize. Also, you should only use this function when ploting the invasion
diagram assuming the small mutation limit of the replication dynamics (SML).

See also

plot_gradient

Examples

>>> import egttools as egt
>>> import matplotlib.pyplot as plt
>>> strategies = [egt.behaviors.NormalForm.TwoActions.Cooperator(), egt.behaviors.NormalForm.TwoActions.Defector(),
... egt.behaviors.NormalForm.TwoActions.TFT(), egt.behaviors.NormalForm.TwoActions.Pavlov(),
... egt.behaviors.NormalForm.TwoActions.Random(), egt.behaviors.NormalForm.TwoActions.GRIM()]
>>> strategy_labels = [strategy.type().replace("NFGStrategies::", '') for strategy in strategies]
>>> T=4; R=2; P=1; S=0; Z= 100; beta=1
>>> A = np.array([
... [P, T],
... [S, R]
...])
>>> game = egt.games.NormalFormGame(100, A, strategies)
>>> evolver = egt.analytical.StochDynamics(len(strategies), game.expected_payoffs(), Z)
>>> sd = evolver.calculate_stationary_distribution(beta)
>>> transitions, fixation_probabilities = evolver.transition_and_fixation_matrix(beta)
>>> fig, ax = plt.subplots(figsize=(5, 5), dpi=150)
>>> G = egt.plotting.draw_invasion_diagram(strategy_labels, 1/Z, fixation_probabilities, sd,
... node_size=2000, min_strategy_frequency=0.00001, ax=ax)
>>> plt.axis('off')
>>> plt.show() # display

egttools.plotting.indicators.plot_gradient

	
plot_gradient(x, gradients, saddle_points, saddle_type, gradient_direction, fig_title='', xlabel='', figsize=(5, 4), **kwargs)

	Creates a figure plotting the gradient of selection together with the saddle points,
and the gradient arrows.

	Parameters

	
	x – vector containing the possible states in x axis. It must have the same length as gradient

	gradients – vector containing the gradient for each possible state

	saddle_points – vector containing all saddle points

	saddle_type – vector of booleans indicating whether the saddle point is stable

	gradient_direction – vector of points indicating the direction of the gradient
between unstable and stable saddle points

	fig_title – a string containing the title of the figure

	xlabel – label for x axis

	figsize – a tuple indicating the size of the figure

	kwargs – you may pass an axis object

:returns a figure object

egttools.plotting.indicators.plot_gradients

	
plot_gradients(gradients, fig_title=None, xlabel='frequency of strategy 0', ylabel='gradient of selection (G)', figsize=(7, 5), color='b', linelabel=None, linewidth_gradient=3, marker=None, marker_plot_freq=1, marker_linewidth=3, marker_size=20, marker_facecolor='b', marker_edgecolor='b', roots=None, stability=None, linewidth_edges=3, edgecolors='black', nodesize=100, nodeborder_width=3, arrowstyle='-|>', nb_minor_ticks=2, major_ticks_length=7, minor_ticks_length=4, ticks_width=2, ticks_labels_size=15, ticks_direction='in', ticks_labels_pad=10, ticks_labels_fontweight='bold', axis_labels_fontweight='bold', axis_labels_fontsize=15, ticks_left=True, ticks_right=True, ticks_top=True, ticks_bottom=True, spine_left_linewidth=2, spine_right_linewidth=2, spine_top_linewidth=2, spine_bottom_linewidth=2, ax=None)

	This function plots the gradient of selection for 1-simplexes (only two strategies).

There is the possibility of plotting the stationary points (roots) of the system and their stability,
but it is recommended that you only do this when analysing the replicator equation.

	Parameters

	
	gradients (a numpy array with the gradients to plot.) –

	fig_title (a title for the figure.) –

	xlabel (the label of the x axis.) –

	ylabel (the label of the y axis.) –

	figsize (the dimensions of the figure.) –

	color (the color to use to plot the line.) –

	linelabel (label assigned to the plotted line.) –

	linewidth_gradient (width of the gradient curve.) –

	marker (use a marker to plot the points (by default no marker is shown).) –

	marker_plot_freq (how often to plot a marker (so that there aren't many overlapping).) –

	marker_linewidth (linewidth of the edge of the marker.) –

	marker_size (size of the marker.) –

	marker_facecolor (marker fill color.) –

	marker_edgecolor (marker edge color.) –

	roots (a list of numpy arrays containing the coordinates of the stationary points of the dynamical system.) –

	stability (a list of integers indicating the stability of the roots (-1 - unstable, 0 - saddle, 1 - stable).) –

	linewidth_edges (width of the arrows indicating the direction of the gradients.) –

	edgecolors (color of the arrows indicating the direction of selection.) –

	nodesize (size of the circles representing the roots.) –

	nodeborder_width (width of the border of the circles.) –

	arrowstyle (style of the arrows that represent the direction of selection.) –

	nb_minor_ticks (number of minor ticks to display.) –

	major_ticks_length (length of major ticks.) –

	minor_ticks_length (length of minor ticks.) –

	ticks_width (width of the ticks.) –

	ticks_labels_size (size of the tick labels.) –

	ticks_direction (direction of the ticks ("in" or "out").) –

	ticks_labels_pad (pad for the labels of the ticks.) –

	ticks_labels_fontweight (font weight of the tick labels (e.g., "bold').) –

	axis_labels_fontweight (font weight of the axis labels (e.g., "bold').) –

	axis_labels_fontsize (font size of the axis labels.) –

	ticks_left (indicates whether to display ticks on the left spine.) –

	ticks_right (indicates whether to display ticks on the right spine.) –

	ticks_top (indicates whether to display ticks on the top spine.) –

	ticks_bottom (indicates whether to display ticks on the bottom spine.) –

	spine_left_linewidth (line width of the left spine.) –

	spine_right_linewidth (line width of the right spine.) –

	spine_top_linewidth (line width of the top spine.) –

	spine_bottom_linewidth (line width of the bottom spine.) –

	ax (a matplotlib.pyplot axis object in which this figure will be plot. If None, then a new axis and figure will) – be created.

	Return type

	axis

	Returns

	
	matplotlib.pyplot.axis

	The axis in which the figure has been plot.

egttools.plotting.indicators.AutoMinorLocator

	
class AutoMinorLocator(n=None)

	Bases: Locator

Dynamically find minor tick positions based on the positions of
major ticks. The scale must be linear with major ticks evenly spaced.

n is the number of subdivisions of the interval between
major ticks; e.g., n=2 will place a single minor tick midway
between major ticks.

If n is omitted or None, it will be set to 5 or 4.

Methods

	create_dummy_axis

	

	nonsingular

	Adjust a range as needed to avoid singularities.

	raise_if_exceeds

	Log at WARNING level if locs is longer than Locator.MAXTICKS.

	set_axis

	

	set_bounds

	[Deprecated]

	set_data_interval

	[Deprecated]

	set_params

	Do nothing, and raise a warning.

	set_view_interval

	[Deprecated]

	tick_values

	Return the values of the located ticks given vmin and vmax.

	view_limits

	Select a scale for the range from vmin to vmax.

Attributes

	MAXTICKS

	

	axis

	

	
__call__()

	Return the locations of the ticks.

	
__init__(n=None)

	n is the number of subdivisions of the interval between
major ticks; e.g., n=2 will place a single minor tick midway
between major ticks.

If n is omitted or None, it will be set to 5 or 4.

	
create_dummy_axis(**kwargs)

	

	
nonsingular(v0, v1)

	Adjust a range as needed to avoid singularities.

This method gets called during autoscaling, with (v0, v1) set to
the data limits on the axes if the axes contains any data, or
(-inf, +inf) if not.

	If v0 == v1 (possibly up to some floating point slop), this
method returns an expanded interval around this value.

	If (v0, v1) == (-inf, +inf), this method returns appropriate
default view limits.

	Otherwise, (v0, v1) is returned without modification.

	
raise_if_exceeds(locs)

	Log at WARNING level if locs is longer than Locator.MAXTICKS.

This is intended to be called immediately before returning locs from
__call__ to inform users in case their Locator returns a huge
number of ticks, causing Matplotlib to run out of memory.

The “strange” name of this method dates back to when it would raise an
exception instead of emitting a log.

	
set_axis(axis)

	

	
set_bounds(vmin, vmax)

	[Deprecated]

Notes

Deprecated since version 3.5: Use Axis.set_view_interval and Axis.set_data_interval instead.

	
set_data_interval(vmin, vmax)

	[Deprecated]

Notes

Deprecated since version 3.5: Use Axis.set_data_interval instead.

	
set_params(**kwargs)

	Do nothing, and raise a warning. Any locator class not supporting the
set_params() function will call this.

	
set_view_interval(vmin, vmax)

	[Deprecated]

Notes

Deprecated since version 3.5: Use Axis.set_view_interval instead.

	
tick_values(vmin, vmax)

	Return the values of the located ticks given vmin and vmax.

Note

To get tick locations with the vmin and vmax values defined
automatically for the associated axis simply call
the Locator instance:

>>> print(type(loc))
<type 'Locator'>
>>> print(loc())
[1, 2, 3, 4]

	
view_limits(vmin, vmax)

	Select a scale for the range from vmin to vmax.

Subclasses should override this method to change locator behaviour.

	
MAXTICKS = 1000

	

	
axis = None

	

egttools.plotting.simplex2d

Functions

	add_arrow

	add an arrow to a line.

	barycentric_to_xy_coordinates

	Transforms barycentric into cartesian coordinates.

	calculate_nb_states

	Calculates the number of states (combinations) of the members of a group in a subgroup.

	find_where_point_is_in_simplex

	Finds in which part of the 2D simplex the point is.

	odeint

	Integrate a system of ordinary differential equations.

	perturb_state

	Produces a number of points in the simplex close to the state.

	perturb_state_discrete

	Produces a number of points in the simplex close to the state.

	sample_simplex

	Transforms a state index into a vector.

	sample_unit_simplex

	Samples uniformly at random the unit simplex with nb_strategies dimensionse.

	xy_to_barycentric_coordinates

	Transforms cartesian into barycentric coordinates.

Classes

	Circle

	A circle patch.

	Simplex2D

	Plots a 2-dimensional simplex in a cartesian plane.

	TypeVar

	Type variable.

egttools.plotting.simplex2d.add_arrow

	
add_arrow(line, position=None, direction='right', size=15, color=None, arrowstyle='-|>', zorder=0)

	add an arrow to a line.

line: Line2D object
position: x-position of the arrow. If None, mean of xdata is taken
direction: ‘left’ or ‘right’
size: size of the arrow in fontsize points
color: if None, line color is taken.

egttools.plotting.simplex2d.barycentric_to_xy_coordinates

	
barycentric_to_xy_coordinates(point_barycentric, corners)

	Transforms barycentric into cartesian coordinates.

	Parameters

	
	point_barycentric (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array containing the 3 barycentric coordinates.

	corners (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An matrix containing the cartesian coordinates of the corners of the triangle that represents the 2-simplex.

	Returns

	An array containing the cartesian coordinates of the input point.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

egttools.plotting.simplex2d.calculate_nb_states

	
calculate_nb_states(group_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → object [https://docs.python.org/3/library/functions.html#object]

	Calculates the number of states (combinations) of the members of a group in a subgroup.

It can be used to calculate the maximum number of states in a discrete simplex.

The implementation of this method follows the stars and bars algorithm (see Wikipedia).

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group (maximum number of players/elements that can adopt each possible strategy).

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies that can be assigned to players.

	Returns

	Number of states (possible combinations of strategies and players).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.numerical.calculate_state, egttools.numerical.sample_simplex

egttools.plotting.simplex2d.find_where_point_is_in_simplex

	
find_where_point_is_in_simplex(point)

	Finds in which part of the 2D simplex the point is.

This function will return:
0 -> if the point is a vertex
1 -> if the point in an edge
2 -> if the point is in the interior of the simplex

	Parameters

	point (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The barycentric coordinates of the point

	Returns

	An integer which indicates where the point is in the simplex and
the index of the non-zero entries.

	Return type

	Tuple[int [https://docs.python.org/3/library/functions.html#int], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

egttools.plotting.simplex2d.odeint

	
odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0, tfirst=False)

	Integrate a system of ordinary differential equations.

Note

For new code, use scipy.integrate.solve_ivp to solve a
differential equation.

Solve a system of ordinary differential equations using lsoda from the
FORTRAN library odepack.

Solves the initial value problem for stiff or non-stiff systems
of first order ode-s:

dy/dt = func(y, t, ...) [or func(t, y, ...)]

where y can be a vector.

Note

By default, the required order of the first two arguments of
func are in the opposite order of the arguments in the system
definition function used by the scipy.integrate.ode class and
the function scipy.integrate.solve_ivp. To use a function with
the signature func(t, y, ...), the argument tfirst must be
set to True.

	Parameters

	
	func (callable(y, t, ...) or callable(t, y, ...)) – Computes the derivative of y at t.
If the signature is callable(t, y, ...), then the argument
tfirst must be set True.

	y0 (array) – Initial condition on y (can be a vector).

	t (array) – A sequence of time points for which to solve for y. The initial
value point should be the first element of this sequence.
This sequence must be monotonically increasing or monotonically
decreasing; repeated values are allowed.

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Extra arguments to pass to function.

	Dfun (callable(y, t, ...) or callable(t, y, ...)) – Gradient (Jacobian) of func.
If the signature is callable(t, y, ...), then the argument
tfirst must be set True.

	col_deriv (bool [https://docs.python.org/3/library/functions.html#bool], optional) – True if Dfun defines derivatives down columns (faster),
otherwise Dfun should define derivatives across rows.

	full_output (bool [https://docs.python.org/3/library/functions.html#bool], optional) – True if to return a dictionary of optional outputs as the second output

	printmessg (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to print the convergence message

	tfirst (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the first two arguments of func (and Dfun, if given)
must t, y instead of the default y, t.

New in version 1.1.0.

	ml (int [https://docs.python.org/3/library/functions.html#int], optional) – If either of these are not None or non-negative, then the
Jacobian is assumed to be banded. These give the number of
lower and upper non-zero diagonals in this banded matrix.
For the banded case, Dfun should return a matrix whose
rows contain the non-zero bands (starting with the lowest diagonal).
Thus, the return matrix jac from Dfun should have shape
(ml + mu + 1, len(y0)) when ml >=0 or mu >=0.
The data in jac must be stored such that jac[i - j + mu, j]
holds the derivative of the i`th equation with respect to the `j`th
state variable. If `col_deriv is True, the transpose of this
jac must be returned.

	mu (int [https://docs.python.org/3/library/functions.html#int], optional) – If either of these are not None or non-negative, then the
Jacobian is assumed to be banded. These give the number of
lower and upper non-zero diagonals in this banded matrix.
For the banded case, Dfun should return a matrix whose
rows contain the non-zero bands (starting with the lowest diagonal).
Thus, the return matrix jac from Dfun should have shape
(ml + mu + 1, len(y0)) when ml >=0 or mu >=0.
The data in jac must be stored such that jac[i - j + mu, j]
holds the derivative of the i`th equation with respect to the `j`th
state variable. If `col_deriv is True, the transpose of this
jac must be returned.

	rtol (float [https://docs.python.org/3/library/functions.html#float], optional) – The input parameters rtol and atol determine the error
control performed by the solver. The solver will control the
vector, e, of estimated local errors in y, according to an
inequality of the form max-norm of (e / ewt) <= 1,
where ewt is a vector of positive error weights computed as
ewt = rtol * abs(y) + atol.
rtol and atol can be either vectors the same length as y or scalars.
Defaults to 1.49012e-8.

	atol (float [https://docs.python.org/3/library/functions.html#float], optional) – The input parameters rtol and atol determine the error
control performed by the solver. The solver will control the
vector, e, of estimated local errors in y, according to an
inequality of the form max-norm of (e / ewt) <= 1,
where ewt is a vector of positive error weights computed as
ewt = rtol * abs(y) + atol.
rtol and atol can be either vectors the same length as y or scalars.
Defaults to 1.49012e-8.

	tcrit (ndarray, optional) – Vector of critical points (e.g., singularities) where integration
care should be taken.

	h0 (float [https://docs.python.org/3/library/functions.html#float], (0: solver-determined), optional) – The step size to be attempted on the first step.

	hmax (float [https://docs.python.org/3/library/functions.html#float], (0: solver-determined), optional) – The maximum absolute step size allowed.

	hmin (float [https://docs.python.org/3/library/functions.html#float], (0: solver-determined), optional) – The minimum absolute step size allowed.

	ixpr (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to generate extra printing at method switches.

	mxstep (int [https://docs.python.org/3/library/functions.html#int], (0: solver-determined), optional) – Maximum number of (internally defined) steps allowed for each
integration point in t.

	mxhnil (int [https://docs.python.org/3/library/functions.html#int], (0: solver-determined), optional) – Maximum number of messages printed.

	mxordn (int [https://docs.python.org/3/library/functions.html#int], (0: solver-determined), optional) – Maximum order to be allowed for the non-stiff (Adams) method.

	mxords (int [https://docs.python.org/3/library/functions.html#int], (0: solver-determined), optional) – Maximum order to be allowed for the stiff (BDF) method.

	Returns

	
	y (array, shape (len(t), len(y0))) – Array containing the value of y for each desired time in t,
with the initial value y0 in the first row.

	infodict (dict, only returned if full_output == True) – Dictionary containing additional output information

	key

	meaning

	’hu’

	vector of step sizes successfully used for each time step

	’tcur’

	vector with the value of t reached for each time step
(will always be at least as large as the input times)

	’tolsf’

	vector of tolerance scale factors, greater than 1.0,
computed when a request for too much accuracy was detected

	’tsw’

	value of t at the time of the last method switch
(given for each time step)

	’nst’

	cumulative number of time steps

	’nfe’

	cumulative number of function evaluations for each time step

	’nje’

	cumulative number of jacobian evaluations for each time step

	’nqu’

	a vector of method orders for each successful step

	’imxer’

	index of the component of largest magnitude in the
weighted local error vector (e / ewt) on an error return, -1
otherwise

	’lenrw’

	the length of the double work array required

	’leniw’

	the length of integer work array required

	’mused’

	a vector of method indicators for each successful time step:
1: adams (nonstiff), 2: bdf (stiff)

See also

	solve_ivp
	solve an initial value problem for a system of ODEs

	ode
	a more object-oriented integrator based on VODE

	quad
	for finding the area under a curve

Examples

The second order differential equation for the angle theta of a
pendulum acted on by gravity with friction can be written:

theta''(t) + b*theta'(t) + c*sin(theta(t)) = 0

where b and c are positive constants, and a prime (‘) denotes a
derivative. To solve this equation with odeint, we must first convert
it to a system of first order equations. By defining the angular
velocity omega(t) = theta'(t), we obtain the system:

theta'(t) = omega(t)
omega'(t) = -b*omega(t) - c*sin(theta(t))

Let y be the vector [theta, omega]. We implement this system
in Python as:

>>> def pend(y, t, b, c):
... theta, omega = y
... dydt = [omega, -b*omega - c*np.sin(theta)]
... return dydt
...

We assume the constants are b = 0.25 and c = 5.0:

>>> b = 0.25
>>> c = 5.0

For initial conditions, we assume the pendulum is nearly vertical
with theta(0) = pi - 0.1, and is initially at rest, so
omega(0) = 0. Then the vector of initial conditions is

>>> y0 = [np.pi - 0.1, 0.0]

We will generate a solution at 101 evenly spaced samples in the interval
0 <= t <= 10. So our array of times is:

>>> t = np.linspace(0, 10, 101)

Call odeint to generate the solution. To pass the parameters
b and c to pend, we give them to odeint using the args
argument.

>>> from scipy.integrate import odeint
>>> sol = odeint(pend, y0, t, args=(b, c))

The solution is an array with shape (101, 2). The first column
is theta(t), and the second is omega(t). The following code
plots both components.

>>> import matplotlib.pyplot as plt
>>> plt.plot(t, sol[:, 0], 'b', label='theta(t)')
>>> plt.plot(t, sol[:, 1], 'g', label='omega(t)')
>>> plt.legend(loc='best')
>>> plt.xlabel('t')
>>> plt.grid()
>>> plt.show()

egttools.plotting.simplex2d.perturb_state

	
perturb_state(state, perturbation=0.01)

	Produces a number of points in the simplex close to the state.

If the sate is a vertex or in an edge, the perturbation is only made
across the edges (we don’t look for points in the interior of the simplex).

	Parameters

	
	state (Union[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – Barycentric coordinates of a point inside the simplex.

	perturbation (float [https://docs.python.org/3/library/functions.html#float]) – The amount of perturbation to apply to the point.

	Returns

	A list of points (in barycentric coordinates) which are close to the state in the simplex.

	Return type

	List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

egttools.plotting.simplex2d.perturb_state_discrete

	
perturb_state_discrete(state, size, perturbation=1)

	Produces a number of points in the simplex close to the state.

If the sate is a vertex or in an edge, the perturbation is only made
across the edges (we don’t look for points in the interior of the simplex).

	Parameters

	
	state (Union[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – The barycentric coordinates of a point inside the simplex.

	size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the edges of the simplex. This should coincide with the size of the finite population
in Moran dynamics.

	perturbation (int [https://docs.python.org/3/library/functions.html#int]) – The amount of perturbation to apply to the point.

	Returns

	A list of points (in barycentric coordinates) which are close to the state in the simplex.

	Return type

	List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

egttools.plotting.simplex2d.sample_simplex

	
sample_simplex(index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]

	Transforms a state index into a vector.

	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – State index.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies.

	Returns

	Vector with the sampled state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.calculate_nb_states

egttools.plotting.simplex2d.sample_unit_simplex

	
sample_unit_simplex(nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Samples uniformly at random the unit simplex with nb_strategies dimensionse.

	Parameters

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies.

	Returns

	Vector with the sampled state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[m, 1]]

See also

egttools.numerical.calculate_state, egttools.numerical.calculate_nb_states, egttools.numerical.sample_simplex

egttools.plotting.simplex2d.xy_to_barycentric_coordinates

	
xy_to_barycentric_coordinates(x, y, corners)

	Transforms cartesian into barycentric coordinates.

	Parameters

	
	x (Union[float [https://docs.python.org/3/library/functions.html#float], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – first component of the cartesian coordinates

	y (Union[float [https://docs.python.org/3/library/functions.html#float], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – second component of the cartesian coordinates

	corners (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a list or a vector containing the coordinates of the corners

	Returns

	The transformmation of the coordinates into barycentric.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Examples

>>> from egttools.plotting import Simplex2D
>>> simplex = Simplex2D()
>>> cartesian_coords = np.array([0.2, 0.])
>>> xy_to_barycentric_coordinates(cartesian_coords[0], cartesian_coords[1], simplex.corners)
array([0.2, 0.])

egttools.plotting.simplex2d.Circle

	
class Circle(xy, radius=5, **kwargs)

	Bases: Ellipse

A circle patch.

Create a true circle at center xy = (x, y) with given radius.

Unlike CirclePolygon which is a polygonal approximation, this uses
Bezier splines and is much closer to a scale-free circle.

Valid keyword arguments are:

	Properties:
	agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: unknown
animated: bool
antialiased or aa: bool or None
capstyle: CapStyle or {‘butt’, ‘projecting’, ‘round’}
clip_box: Bbox
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color: color
edgecolor or ec: color or None
facecolor or fc: color or None
figure: Figure
fill: bool
gid: str
hatch: {‘/’, ‘\’, ‘|’, ‘-‘, ‘+’, ‘x’, ‘o’, ‘O’, ‘.’, ‘*’}
in_layout: bool
joinstyle: JoinStyle or {‘miter’, ‘round’, ‘bevel’}
label: object
linestyle or ls: {‘-‘, ‘–’, ‘-.’, ‘:’, ‘’, (offset, on-off-seq), …}
linewidth or lw: float or None
mouseover: bool
path_effects: AbstractPathEffect
picker: None or bool or float or callable
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: Transform
url: str
visible: bool
zorder: float

Methods

	add_callback

	Add a callback function that will be called whenever one of the Artist's properties changes.

	contains

	Test whether the mouse event occurred in the patch.

	contains_point

	Return whether the given point is inside the patch.

	contains_points

	Return whether the given points are inside the patch.

	convert_xunits

	Convert x using the unit type of the xaxis.

	convert_yunits

	Convert y using the unit type of the yaxis.

	draw

	Draw the Artist (and its children) using the given renderer.

	findobj

	Find artist objects.

	format_cursor_data

	Return a string representation of data.

	get_aa

	Alias for get_antialiased.

	get_agg_filter

	Return filter function to be used for agg filter.

	get_alpha

	Return the alpha value used for blending - not supported on all backends.

	get_angle

	Return the angle of the ellipse.

	get_animated

	Return whether the artist is animated.

	get_antialiased

	Return whether antialiasing is used for drawing.

	get_capstyle

	Return the capstyle.

	get_center

	Return the center of the ellipse.

	get_children

	Return a list of the child Artists of this Artist.

	get_clip_box

	Return the clipbox.

	get_clip_on

	Return whether the artist uses clipping.

	get_clip_path

	Return the clip path.

	get_corners

	Return the corners of the ellipse bounding box.

	get_cursor_data

	Return the cursor data for a given event.

	get_data_transform

	Return the Transform mapping data coordinates to physical coordinates.

	get_ec

	Alias for get_edgecolor.

	get_edgecolor

	Return the edge color.

	get_extents

	Return the Patch's axis-aligned extents as a Bbox.

	get_facecolor

	Return the face color.

	get_fc

	Alias for get_facecolor.

	get_figure

	Return the Figure instance the artist belongs to.

	get_fill

	Return whether the patch is filled.

	get_gid

	Return the group id.

	get_hatch

	Return the hatching pattern.

	get_height

	Return the height of the ellipse.

	get_in_layout

	Return boolean flag, True if artist is included in layout calculations.

	get_joinstyle

	Return the joinstyle.

	get_label

	Return the label used for this artist in the legend.

	get_linestyle

	Return the linestyle.

	get_linewidth

	Return the line width in points.

	get_ls

	Alias for get_linestyle.

	get_lw

	Alias for get_linewidth.

	get_mouseover

	Return whether this artist is queried for custom context information when the mouse cursor moves over it.

	get_patch_transform

	Return the Transform instance mapping patch coordinates to data coordinates.

	get_path

	Return the path of the ellipse.

	get_path_effects

	

	get_picker

	Return the picking behavior of the artist.

	get_radius

	Return the radius of the circle.

	get_rasterized

	Return whether the artist is to be rasterized.

	get_sketch_params

	Return the sketch parameters for the artist.

	get_snap

	Return the snap setting.

	get_tightbbox

	Like Artist.get_window_extent, but includes any clipping.

	get_transform

	Return the Transform applied to the Patch.

	get_transformed_clip_path_and_affine

	Return the clip path with the non-affine part of its transformation applied, and the remaining affine part of its transformation.

	get_url

	Return the url.

	get_verts

	Return a copy of the vertices used in this patch.

	get_visible

	Return the visibility.

	get_width

	Return the width of the ellipse.

	get_window_extent

	Get the artist's bounding box in display space.

	get_zorder

	Return the artist's zorder.

	have_units

	Return whether units are set on any axis.

	is_transform_set

	Return whether the Artist has an explicitly set transform.

	pchanged

	Call all of the registered callbacks.

	pick

	Process a pick event.

	pickable

	Return whether the artist is pickable.

	properties

	Return a dictionary of all the properties of the artist.

	remove

	Remove the artist from the figure if possible.

	remove_callback

	Remove a callback based on its observer id.

	set

	Set multiple properties at once.

	set_aa

	Alias for set_antialiased.

	set_agg_filter

	Set the agg filter.

	set_alpha

	Set the alpha value used for blending - not supported on all backends.

	set_angle

	Set the angle of the ellipse.

	set_animated

	Set whether the artist is intended to be used in an animation.

	set_antialiased

	Set whether to use antialiased rendering.

	set_capstyle

	Set the CapStyle.

	set_center

	Set the center of the ellipse.

	set_clip_box

	Set the artist's clip Bbox.

	set_clip_on

	Set whether the artist uses clipping.

	set_clip_path

	Set the artist's clip path.

	set_color

	Set both the edgecolor and the facecolor.

	set_ec

	Alias for set_edgecolor.

	set_edgecolor

	Set the patch edge color.

	set_facecolor

	Set the patch face color.

	set_fc

	Alias for set_facecolor.

	set_figure

	Set the Figure instance the artist belongs to.

	set_fill

	Set whether to fill the patch.

	set_gid

	Set the (group) id for the artist.

	set_hatch

	Set the hatching pattern.

	set_height

	Set the height of the ellipse.

	set_in_layout

	Set if artist is to be included in layout calculations, E.g.

	set_joinstyle

	Set the JoinStyle.

	set_label

	Set a label that will be displayed in the legend.

	set_linestyle

	Set the patch linestyle.

	set_linewidth

	Set the patch linewidth in points.

	set_ls

	Alias for set_linestyle.

	set_lw

	Alias for set_linewidth.

	set_mouseover

	Set whether this artist is queried for custom context information when the mouse cursor moves over it.

	set_path_effects

	Set the path effects.

	set_picker

	Define the picking behavior of the artist.

	set_radius

	Set the radius of the circle.

	set_rasterized

	Force rasterized (bitmap) drawing for vector graphics output.

	set_sketch_params

	Set the sketch parameters.

	set_snap

	Set the snapping behavior.

	set_transform

	Set the artist transform.

	set_url

	Set the url for the artist.

	set_visible

	Set the artist's visibility.

	set_width

	Set the width of the ellipse.

	set_zorder

	Set the zorder for the artist.

	update

	Update this artist's properties from the dict props.

	update_from

	Copy properties from other to self.

Attributes

	angle

	Return the angle of the ellipse.

	axes

	The Axes instance the artist resides in, or None.

	center

	Return the center of the ellipse.

	fill

	Return whether the patch is filled.

	height

	Return the height of the ellipse.

	mouseover

	Return whether this artist is queried for custom context information when the mouse cursor moves over it.

	radius

	Return the radius of the circle.

	stale

	Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of the artist.

	sticky_edges

	x and y sticky edge lists for autoscaling.

	width

	Return the width of the ellipse.

	zorder

	

	
__init__(xy, radius=5, **kwargs)

	Create a true circle at center xy = (x, y) with given radius.

Unlike CirclePolygon which is a polygonal approximation, this uses
Bezier splines and is much closer to a scale-free circle.

Valid keyword arguments are:

	Properties:
	agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: unknown
animated: bool
antialiased or aa: bool or None
capstyle: CapStyle or {‘butt’, ‘projecting’, ‘round’}
clip_box: Bbox
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color: color
edgecolor or ec: color or None
facecolor or fc: color or None
figure: Figure
fill: bool
gid: str
hatch: {‘/’, ‘\’, ‘|’, ‘-‘, ‘+’, ‘x’, ‘o’, ‘O’, ‘.’, ‘*’}
in_layout: bool
joinstyle: JoinStyle or {‘miter’, ‘round’, ‘bevel’}
label: object
linestyle or ls: {‘-‘, ‘–’, ‘-.’, ‘:’, ‘’, (offset, on-off-seq), …}
linewidth or lw: float or None
mouseover: bool
path_effects: AbstractPathEffect
picker: None or bool or float or callable
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: Transform
url: str
visible: bool
zorder: float

	
classmethod __init_subclass__()

	This method is called when a class is subclassed.

The default implementation does nothing. It may be
overridden to extend subclasses.

	
__str__()

	Return str(self).

	
add_callback(func)

	Add a callback function that will be called whenever one of the
Artist’s properties changes.

	Parameters

	func (callable) – The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist
but are ignored.

	Returns

	The observer id associated with the callback. This id can be
used for removing the callback with remove_callback later.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

remove_callback

	
contains(mouseevent, radius=None)

	Test whether the mouse event occurred in the patch.

	Return type

	(bool [https://docs.python.org/3/library/functions.html#bool], empty dict)

	
contains_point(point, radius=None)

	Return whether the given point is inside the patch.

	Parameters

	
	point ((float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])) – The point (x, y) to check, in target coordinates of
self.get_transform(). These are display coordinates for patches
that are added to a figure or axes.

	radius (float [https://docs.python.org/3/library/functions.html#float], optional) – Add an additional margin on the patch in target coordinates of
self.get_transform(). See Path.contains_point for further
details.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

Notes

The proper use of this method depends on the transform of the patch.
Isolated patches do not have a transform. In this case, the patch
creation coordinates and the point coordinates match. The following
example checks that the center of a circle is within the circle

>>> center = 0, 0
>>> c = Circle(center, radius=1)
>>> c.contains_point(center)
True

The convention of checking against the transformed patch stems from
the fact that this method is predominantly used to check if display
coordinates (e.g. from mouse events) are within the patch. If you want
to do the above check with data coordinates, you have to properly
transform them first:

>>> center = 0, 0
>>> c = Circle(center, radius=1)
>>> plt.gca().add_patch(c)
>>> transformed_center = c.get_transform().transform(center)
>>> c.contains_point(transformed_center)
True

	
contains_points(points, radius=None)

	Return whether the given points are inside the patch.

	Parameters

	
	points ((N, 2) array) – The points to check, in target coordinates of
self.get_transform(). These are display coordinates for patches
that are added to a figure or axes. Columns contain x and y values.

	radius (float [https://docs.python.org/3/library/functions.html#float], optional) – Add an additional margin on the patch in target coordinates of
self.get_transform(). See Path.contains_point for further
details.

	Return type

	length-N bool array

Notes

The proper use of this method depends on the transform of the patch.
See the notes on Patch.contains_point.

	
convert_xunits(x)

	Convert x using the unit type of the xaxis.

If the artist is not contained in an Axes or if the xaxis does not
have units, x itself is returned.

	
convert_yunits(y)

	Convert y using the unit type of the yaxis.

If the artist is not contained in an Axes or if the yaxis does not
have units, y itself is returned.

	
draw(renderer)

	Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible
returns False).

	Parameters

	renderer (RendererBase subclass.) –

Notes

This method is overridden in the Artist subclasses.

	
findobj(match=None, include_self=True)

	Find artist objects.

Recursively find all Artist instances contained in the artist.

	Parameters

	
	match – A filter criterion for the matches. This can be

	None: Return all objects contained in artist.

	A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function
returns True.

	A class instance: e.g., Line2D. The result will only contain
artists of this class or its subclasses (isinstance check).

	include_self (bool [https://docs.python.org/3/library/functions.html#bool]) – Include self in the list to be checked for a match.

	Return type

	list of Artist

	
format_cursor_data(data)

	Return a string representation of data.

Note

This method is intended to be overridden by artist subclasses.
As an end-user of Matplotlib you will most likely not call this
method yourself.

The default implementation converts ints and floats and arrays of ints
and floats into a comma-separated string enclosed in square brackets,
unless the artist has an associated colorbar, in which case scalar
values are formatted using the colorbar’s formatter.

See also

get_cursor_data

	
get_aa()

	Alias for get_antialiased.

	
get_agg_filter()

	Return filter function to be used for agg filter.

	
get_alpha()

	Return the alpha value used for blending - not supported on all
backends.

	
get_angle()

	Return the angle of the ellipse.

	
get_animated()

	Return whether the artist is animated.

	
get_antialiased()

	Return whether antialiasing is used for drawing.

	
get_capstyle()

	Return the capstyle.

	
get_center()

	Return the center of the ellipse.

	
get_children()

	Return a list of the child Artists of this Artist.

	
get_clip_box()

	Return the clipbox.

	
get_clip_on()

	Return whether the artist uses clipping.

	
get_clip_path()

	Return the clip path.

	
get_corners()

	Return the corners of the ellipse bounding box.

The bounding box orientation is moving anti-clockwise from the
lower left corner defined before rotation.

	
get_cursor_data(event)

	Return the cursor data for a given event.

Note

This method is intended to be overridden by artist subclasses.
As an end-user of Matplotlib you will most likely not call this
method yourself.

Cursor data can be used by Artists to provide additional context
information for a given event. The default implementation just returns
None.

Subclasses can override the method and return arbitrary data. However,
when doing so, they must ensure that format_cursor_data can convert
the data to a string representation.

The only current use case is displaying the z-value of an AxesImage
in the status bar of a plot window, while moving the mouse.

	Parameters

	event (matplotlib.backend_bases.MouseEvent) –

See also

format_cursor_data

	
get_data_transform()

	Return the Transform mapping data coordinates to
physical coordinates.

	
get_ec()

	Alias for get_edgecolor.

	
get_edgecolor()

	Return the edge color.

	
get_extents()

	Return the Patch’s axis-aligned extents as a Bbox.

	
get_facecolor()

	Return the face color.

	
get_fc()

	Alias for get_facecolor.

	
get_figure()

	Return the Figure instance the artist belongs to.

	
get_fill()

	Return whether the patch is filled.

	
get_gid()

	Return the group id.

	
get_hatch()

	Return the hatching pattern.

	
get_height()

	Return the height of the ellipse.

	
get_in_layout()

	Return boolean flag, True if artist is included in layout
calculations.

E.g. /tutorials/intermediate/constrainedlayout_guide,
Figure.tight_layout(), and
fig.savefig(fname, bbox_inches='tight').

	
get_joinstyle()

	Return the joinstyle.

	
get_label()

	Return the label used for this artist in the legend.

	
get_linestyle()

	Return the linestyle.

	
get_linewidth()

	Return the line width in points.

	
get_ls()

	Alias for get_linestyle.

	
get_lw()

	Alias for get_linewidth.

	
get_mouseover()

	Return whether this artist is queried for custom context information
when the mouse cursor moves over it.

	
get_patch_transform()

	Return the Transform instance mapping patch coordinates
to data coordinates.

For example, one may define a patch of a circle which represents a
radius of 5 by providing coordinates for a unit circle, and a
transform which scales the coordinates (the patch coordinate) by 5.

	
get_path()

	Return the path of the ellipse.

	
get_path_effects()

	

	
get_picker()

	Return the picking behavior of the artist.

The possible values are described in set_picker.

See also

set_picker, pickable, pick

	
get_radius()

	Return the radius of the circle.

	
get_rasterized()

	Return whether the artist is to be rasterized.

	
get_sketch_params()

	Return the sketch parameters for the artist.

	Returns

	A 3-tuple with the following elements:

	scale: The amplitude of the wiggle perpendicular to the
source line.

	length: The length of the wiggle along the line.

	randomness: The scale factor by which the length is
shrunken or expanded.

Returns None if no sketch parameters were set.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or None

	
get_snap()

	Return the snap setting.

See set_snap for details.

	
get_tightbbox(renderer=None)

	Like Artist.get_window_extent, but includes any clipping.

	Parameters

	renderer (RendererBase subclass) – renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

	Returns

	The enclosing bounding box (in figure pixel coordinates).

	Return type

	Bbox

	
get_transform()

	Return the Transform applied to the Patch.

	
get_transformed_clip_path_and_affine()

	Return the clip path with the non-affine part of its
transformation applied, and the remaining affine part of its
transformation.

	
get_url()

	Return the url.

	
get_verts()

	Return a copy of the vertices used in this patch.

If the patch contains Bezier curves, the curves will be interpolated by
line segments. To access the curves as curves, use get_path.

	
get_visible()

	Return the visibility.

	
get_width()

	Return the width of the ellipse.

	
get_window_extent(renderer=None)

	Get the artist’s bounding box in display space.

The bounding box’ width and height are nonnegative.

Subclasses should override for inclusion in the bounding box
“tight” calculation. Default is to return an empty bounding
box at 0, 0.

Be careful when using this function, the results will not update
if the artist window extent of the artist changes. The extent
can change due to any changes in the transform stack, such as
changing the axes limits, the figure size, or the canvas used
(as is done when saving a figure). This can lead to unexpected
behavior where interactive figures will look fine on the screen,
but will save incorrectly.

	
get_zorder()

	Return the artist’s zorder.

	
have_units()

	Return whether units are set on any axis.

	
is_transform_set()

	Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

	
pchanged()

	Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also

add_callback, remove_callback

	
pick(mouseevent)

	Process a pick event.

Each child artist will fire a pick event if mouseevent is over
the artist and the artist has picker set.

See also

set_picker, get_picker, pickable

	
pickable()

	Return whether the artist is pickable.

See also

set_picker, get_picker, pick

	
properties()

	Return a dictionary of all the properties of the artist.

	
remove()

	Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g.,
with FigureCanvasBase.draw_idle. Call relim to
update the axes limits if desired.

Note: relim will not see collections even if the
collection was added to the axes with autolim = True.

Note: there is no support for removing the artist’s legend entry.

	
remove_callback(oid)

	Remove a callback based on its observer id.

See also

add_callback

	
set(*, agg_filter=<UNSET>, alpha=<UNSET>, angle=<UNSET>, animated=<UNSET>, antialiased=<UNSET>, capstyle=<UNSET>, center=<UNSET>, clip_box=<UNSET>, clip_on=<UNSET>, clip_path=<UNSET>, color=<UNSET>, edgecolor=<UNSET>, facecolor=<UNSET>, fill=<UNSET>, gid=<UNSET>, hatch=<UNSET>, height=<UNSET>, in_layout=<UNSET>, joinstyle=<UNSET>, label=<UNSET>, linestyle=<UNSET>, linewidth=<UNSET>, mouseover=<UNSET>, path_effects=<UNSET>, picker=<UNSET>, radius=<UNSET>, rasterized=<UNSET>, sketch_params=<UNSET>, snap=<UNSET>, transform=<UNSET>, url=<UNSET>, visible=<UNSET>, width=<UNSET>, zorder=<UNSET>)

	Set multiple properties at once.

Supported properties are

	Properties:
	agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array and two offsets from the bottom left corner of the image
alpha: scalar or None
angle: float
animated: bool
antialiased or aa: bool or None
capstyle: CapStyle or {‘butt’, ‘projecting’, ‘round’}
center: (float, float)
clip_box: Bbox
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color: color
edgecolor or ec: color or None
facecolor or fc: color or None
figure: Figure
fill: bool
gid: str
hatch: {‘/’, ‘\’, ‘|’, ‘-‘, ‘+’, ‘x’, ‘o’, ‘O’, ‘.’, ‘*’}
height: float
in_layout: bool
joinstyle: JoinStyle or {‘miter’, ‘round’, ‘bevel’}
label: object
linestyle or ls: {‘-‘, ‘–’, ‘-.’, ‘:’, ‘’, (offset, on-off-seq), …}
linewidth or lw: float or None
mouseover: bool
path_effects: AbstractPathEffect
picker: None or bool or float or callable
radius: float
rasterized: bool
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
transform: Transform
url: str
visible: bool
width: float
zorder: float

	
set_aa(aa)

	Alias for set_antialiased.

	
set_agg_filter(filter_func)

	Set the agg filter.

	Parameters

	filter_func (callable) – A filter function, which takes a (m, n, depth) float array
and a dpi value, and returns a (m, n, depth) array and two
offsets from the bottom left corner of the image

	
set_alpha(alpha)

	Set the alpha value used for blending - not supported on all backends.

	Parameters

	alpha (scalar or None) – alpha must be within the 0-1 range, inclusive.

	
set_angle(angle)

	Set the angle of the ellipse.

	Parameters

	angle (float [https://docs.python.org/3/library/functions.html#float]) –

	
set_animated(b)

	Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure.
You have to call Figure.draw_artist / Axes.draw_artist
explicitly on the artist. This approach is used to speed up animations
using blitting.

See also matplotlib.animation and
/tutorials/advanced/blitting.

	Parameters

	b (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
set_antialiased(aa)

	Set whether to use antialiased rendering.

	Parameters

	aa (bool [https://docs.python.org/3/library/functions.html#bool] or None) –

	
set_capstyle(s)

	Set the CapStyle.

The default capstyle is ‘round’ for FancyArrowPatch and ‘butt’ for
all other patches.

	Parameters

	s (CapStyle or {‘butt’, ‘projecting’, ‘round’}) –

	
set_center(xy)

	Set the center of the ellipse.

	Parameters

	xy ((float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])) –

	
set_clip_box(clipbox)

	Set the artist’s clip Bbox.

	Parameters

	clipbox (Bbox) –

	
set_clip_on(b)

	Set whether the artist uses clipping.

When False artists will be visible outside of the Axes which
can lead to unexpected results.

	Parameters

	b (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
set_clip_path(path, transform=None)

	Set the artist’s clip path.

	Parameters

	
	path (Patch or Path or TransformedPath or None) – The clip path. If given a Path, transform must be provided as
well. If None, a previously set clip path is removed.

	transform (Transform, optional) – Only used if path is a Path, in which case the given Path
is converted to a TransformedPath using transform.

Notes

For efficiency, if path is a Rectangle this method will set the
clipping box to the corresponding rectangle and set the clipping path
to None.

For technical reasons (support of set), a tuple
(path, transform) is also accepted as a single positional
parameter.

	
set_color(c)

	Set both the edgecolor and the facecolor.

	Parameters

	c (color) –

See also

Patch.set_facecolor, Patch.set_edgecolor

	
set_ec(color)

	Alias for set_edgecolor.

	
set_edgecolor(color)

	Set the patch edge color.

	Parameters

	color (color or None) –

	
set_facecolor(color)

	Set the patch face color.

	Parameters

	color (color or None) –

	
set_fc(color)

	Alias for set_facecolor.

	
set_figure(fig)

	Set the Figure instance the artist belongs to.

	Parameters

	fig (Figure) –

	
set_fill(b)

	Set whether to fill the patch.

	Parameters

	b (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
set_gid(gid)

	Set the (group) id for the artist.

	Parameters

	gid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
set_hatch(hatch)

	Set the hatching pattern.

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified
hatchings are done. If same letter repeats, it increases the
density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg
backends only.

	Parameters

	hatch ({'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}) –

	
set_height(height)

	Set the height of the ellipse.

	Parameters

	height (float [https://docs.python.org/3/library/functions.html#float]) –

	
set_in_layout(in_layout)

	Set if artist is to be included in layout calculations,
E.g. /tutorials/intermediate/constrainedlayout_guide,
Figure.tight_layout(), and
fig.savefig(fname, bbox_inches='tight').

	Parameters

	in_layout (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
set_joinstyle(s)

	Set the JoinStyle.

The default joinstyle is ‘round’ for FancyArrowPatch and ‘miter’ for
all other patches.

	Parameters

	s (JoinStyle or {‘miter’, ‘round’, ‘bevel’}) –

	
set_label(s)

	Set a label that will be displayed in the legend.

	Parameters

	s (object [https://docs.python.org/3/library/functions.html#object]) – s will be converted to a string by calling str [https://docs.python.org/3/library/stdtypes.html#str].

	
set_linestyle(ls)

	Set the patch linestyle.

	linestyle

	description

	'-' or 'solid'

	solid line

	'--' or 'dashed'

	dashed line

	'-.' or 'dashdot'

	dash-dotted line

	':' or 'dotted'

	dotted line

	'none', 'None', ' ', or ''

	draw nothing

Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq)

where onoffseq is an even length tuple of on and off ink in points.

	Parameters

	ls ({'-', '--', '-.', ':', '', (offset, on-off-seq), ...}) – The line style.

	
set_linewidth(w)

	Set the patch linewidth in points.

	Parameters

	w (float [https://docs.python.org/3/library/functions.html#float] or None) –

	
set_ls(ls)

	Alias for set_linestyle.

	
set_lw(w)

	Alias for set_linewidth.

	
set_mouseover(mouseover)

	Set whether this artist is queried for custom context information when
the mouse cursor moves over it.

	Parameters

	mouseover (bool [https://docs.python.org/3/library/functions.html#bool]) –

See also

get_cursor_data, ToolCursorPosition, NavigationToolbar2

	
set_path_effects(path_effects)

	Set the path effects.

	Parameters

	path_effects (AbstractPathEffect) –

	
set_picker(picker)

	Define the picking behavior of the artist.

	Parameters

	picker (None or bool [https://docs.python.org/3/library/functions.html#bool] or float [https://docs.python.org/3/library/functions.html#float] or callable) – This can be one of the following:

	None: Picking is disabled for this artist (default).

	A boolean: If True then picking will be enabled and the
artist will fire a pick event if the mouse event is over
the artist.

	A float: If picker is a number it is interpreted as an
epsilon tolerance in points and the artist will fire
off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections,
the artist may provide additional data to the pick event
that is generated, e.g., the indices of the data within
epsilon of the pick event

	A function: If picker is callable, it is a user supplied
function which determines whether the artist is hit by the
mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the
artist, return hit=True and props is a dictionary of
properties you want added to the PickEvent attributes.

	
set_radius(radius)

	Set the radius of the circle.

	Parameters

	radius (float [https://docs.python.org/3/library/functions.html#float]) –

	
set_rasterized(rasterized)

	Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to
enable this on an artist that does not support it, the command has no
effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

	Parameters

	rasterized (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
set_sketch_params(scale=None, length=None, randomness=None)

	Set the sketch parameters.

	Parameters

	
	scale (float [https://docs.python.org/3/library/functions.html#float], optional) – The amplitude of the wiggle perpendicular to the source
line, in pixels. If scale is None [https://docs.python.org/3/library/constants.html#None], or not provided, no
sketch filter will be provided.

	length (float [https://docs.python.org/3/library/functions.html#float], optional) – The length of the wiggle along the line, in pixels
(default 128.0)

	randomness (float [https://docs.python.org/3/library/functions.html#float], optional) – The scale factor by which the length is shrunken or
expanded (default 16.0)

The PGF backend uses this argument as an RNG seed and not as
described above. Using the same seed yields the same random shape.

	
set_snap(snap)

	Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in
clearer images. For example, if a black line of 1px width was
defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid,
which would be a grey value on both adjacent pixel positions. In
contrast, snapping will move the line to the nearest integer pixel
value, so that the resulting image will really contain a 1px wide
black line.

Snapping is currently only supported by the Agg and MacOSX backends.

	Parameters

	snap (bool [https://docs.python.org/3/library/functions.html#bool] or None) – Possible values:

	True: Snap vertices to the nearest pixel center.

	False: Do not modify vertex positions.

	None: (auto) If the path contains only rectilinear line
segments, round to the nearest pixel center.

	
set_transform(t)

	Set the artist transform.

	Parameters

	t (Transform) –

	
set_url(url)

	Set the url for the artist.

	Parameters

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
set_visible(b)

	Set the artist’s visibility.

	Parameters

	b (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
set_width(width)

	Set the width of the ellipse.

	Parameters

	width (float [https://docs.python.org/3/library/functions.html#float]) –

	
set_zorder(level)

	Set the zorder for the artist. Artists with lower zorder
values are drawn first.

	Parameters

	level (float [https://docs.python.org/3/library/functions.html#float]) –

	
update(props)

	Update this artist’s properties from the dict props.

	Parameters

	props (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	
update_from(other)

	Copy properties from other to self.

	
property angle

	Return the angle of the ellipse.

	
property axes

	The Axes instance the artist resides in, or None.

	
property center

	Return the center of the ellipse.

	
property fill

	Return whether the patch is filled.

	
property height

	Return the height of the ellipse.

	
property mouseover

	Return whether this artist is queried for custom context information
when the mouse cursor moves over it.

	
property radius

	Return the radius of the circle.

	
property stale

	Whether the artist is ‘stale’ and needs to be re-drawn for the output
to match the internal state of the artist.

	
property sticky_edges

	x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in
the corresponding sticky_edges list, then no margin will be added–the
view limit “sticks” to the edge. A typical use case is histograms,
where one usually expects no margin on the bottom edge (0) of the
histogram.

Moreover, margin expansion “bumps” against sticky edges and cannot
cross them. For example, if the upper data limit is 1.0, the upper
view limit computed by simple margin application is 1.2, but there is a
sticky edge at 1.1, then the actual upper view limit will be 1.1.

This attribute cannot be assigned to; however, the x and y
lists can be modified in place as needed.

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

	
property width

	Return the width of the ellipse.

	
zorder = 1

	

egttools.plotting.simplex2d.Simplex2D

	
class Simplex2D(nb_points=1000, discrete=False, size=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Plots a 2-dimensional simplex in a cartesian plane.

This class offers utility methods to plot gradients and equilibrium points on a 2-simplex (triangle).

The plotting is always done on the unit simplex for convenience. At the moment no rotations are
implemented, but we plan to add this feature, so that the triangle can be rotated before the plot.

We discern between continuous and discrete dynamics. The main reason is that this class’ objective
is to plot evolutionary dynamics on a simplex. When we are working with the replicator equation
it is straightforward to calculate all the gradients on the unit simplex. However, when working
with finite populations using the social learning model (social imitation), we are actually working
with a simplex with size equivalent to the population size (so all the dimensions of the simplex must
sum to Z) and we only consider discrete (integer) values inside the simplex (the population may
only have integer individuals). Of course this can be translated into frequencies, which gets us
back to the unit simplex, but it is not so simple to transform any value between 0-1 sampled with
numpy.linspace to a discrete value.

Therefore, for the discrete case, will will sample directly discrete points in barycentric
coordinates and only then, translate them into cartesian cooordinates.

	Parameters

	
	nb_points (int [https://docs.python.org/3/library/functions.html#int]) – number of points for which to calculate the gradients

	discrete (bool [https://docs.python.org/3/library/functions.html#bool]) – indicates whether we are in the continuous or discrete case

	size (int [https://docs.python.org/3/library/functions.html#int]) – if we are in the discrete case, indicates the size of the simplex

See also

egttools.plotting.plot_gradient, egttools.plotting.draw_invasion_diagram, egttools.analytical.replicator_equation, egttools.analytical.StochDynamics, Cite, -----, This

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from egttools.plotting.helpers import (xy_to_barycentric_coordinates, calculate_stationary_points,
 ... calculate_stability)
>>> from egttools.helpers.vectorized import (vectorized_replicator_equation,
 ... vectorized_barycentric_to_xy_coordinates)
>>> from egttools.analytical import replicator_equation
>>> simplex = Simplex2D()
>>> payoffs = np.array([[1, 0, 0],
 ... [0, 2, 0],
 ... [0, 0, 3]])
>>> v = np.asarray(xy_to_barycentric_coordinates(simplex.X, simplex.Y, simplex.corners))
>>> results = vectorized_replicator_equation(v, payoffs)
>>> xy_results = vectorized_barycentric_to_xy_coordinates(results, simplex.corners)
>>> Ux = xy_results[:, :, 0].astype(np.float64)
>>> Uy = xy_results[:, :, 1].astype(np.float64)
>>> calculate_gradients = lambda u: replicator_equation(u, payoffs)
>>> roots, roots_xy = calculate_stationary_points(simplex.trimesh.x, simplex.trimesh.y,
 ... simplex.corners, calculate_gradients)
>>> stability = calculate_stability(roots, calculate_gradients)
>>> type_labels = ['A', 'B', 'C']
>>> fig, ax = plt.subplots(figsize=(10,8))
>>> plot = (simplex.add_axis(ax=ax)
 apply_simplex_boundaries_to_gradients(Ux, Uy)
 draw_triangle()
 draw_gradients(zorder=0)
 add_colorbar()
 draw_stationary_points(roots_xy, stability)
 add_vertex_labels(type_labels)
 draw_trajectory_from_roots(lambda u, t: replicator_equation(u, payoffs),
 ... roots,
 ... stability,
 ... trajectory_length=15,
 ... linewidth=1,
 ... step=0.01,
 ... color='k', draw_arrow=True, arrowdirection='right',
 ... arrowsize=30, zorder=4, arrowstyle='fancy')
 draw_scatter_shadow(lambda u, t: replicator_equation(u, payoffs), 300, color='gray',
 ... marker='.', s=0.1, zorder=0)

[image: ../_images/simplex_example_infinite_pop_1.png]
>>> plot = (simplex.add_axis(ax=ax)
 apply_simplex_boundaries_to_gradients(Ux, Uy)
 draw_triangle()
 draw_stationary_points(roots_xy, stability)
 add_vertex_labels(type_labels)
 draw_trajectory_from_roots(lambda u, t: replicator_equation(u, payoffs),
 ... roots,
 ... stability,
 ... trajectory_length=15,
 ... linewidth=1,
 ... step=0.01,
 ... color='k', draw_arrow=True, arrowdirection='right',
 ... arrowsize=30, zorder=4, arrowstyle='fancy')
 draw_scatter_shadow(lambda u, t: replicator_equation(u, payoffs), 300, color='gray',
 ... marker='.', s=0.1, zorder=0)

[image: ../_images/simplex_example_infinite_pop_2.png]
Methods

	add_axis

	Creates or stores a new axis inside the class.

	add_colorbar

	Adds a color bar to indicate the meaning of the colors of the plotted gradients.

	add_edges_with_random_drift

	Adds information to the class about which edges have random drift.

	add_vertex_labels

	Adds labels to the vertices of the triangle that represents the 2-simplex.

	apply_simplex_boundaries_to_gradients

	Applies boundaries of the triangle to a list of gradient values over the cartesian grid.

	draw_gradients

	Draws the gradients inside the unit simplex using a streamplot.

	draw_scatter_shadow

	Draws a series of point which follows trajectories in the simplex starting from random points.

	draw_stationary_distribution

	Draws the stationary distribution inside the simplex using a matplotlib.pyplot.tripcolor

	draw_stationary_points

	Draws the black circles for stable points and white circles for unstable ones.

	draw_trajectories

	Draws trajectories inside the unit simplex starting from random initial points.

	draw_trajectory_from_points

	Draws trajectories inside the unit simplex starting from the indicated points.

	draw_trajectory_from_roots

	Draws trajectories inside the unit simplex starting from the stationary points.

	draw_trajectory_from_vector

	

	draw_triangle

	Draws the borders of a triangle enclosing the 2-simplex.

	get_figure_and_axis

	Returns the stored figure and axis.

Attributes

	corners

	

	refiner

	

	side_slope

	

	top_corner

	

	triangle

	

	trimesh

	

	
__init__(nb_points=1000, discrete=False, size=None)

	Plots a 2-dimensional simplex in a cartesian plane.

This class offers utility methods to plot gradients and equilibrium points on a 2-simplex (triangle).

The plotting is always done on the unit simplex for convenience. At the moment no rotations are
implemented, but we plan to add this feature, so that the triangle can be rotated before the plot.

We discern between continuous and discrete dynamics. The main reason is that this class’ objective
is to plot evolutionary dynamics on a simplex. When we are working with the replicator equation
it is straightforward to calculate all the gradients on the unit simplex. However, when working
with finite populations using the social learning model (social imitation), we are actually working
with a simplex with size equivalent to the population size (so all the dimensions of the simplex must
sum to Z) and we only consider discrete (integer) values inside the simplex (the population may
only have integer individuals). Of course this can be translated into frequencies, which gets us
back to the unit simplex, but it is not so simple to transform any value between 0-1 sampled with
numpy.linspace to a discrete value.

Therefore, for the discrete case, will will sample directly discrete points in barycentric
coordinates and only then, translate them into cartesian cooordinates.

	Parameters

	
	nb_points (int [https://docs.python.org/3/library/functions.html#int]) – number of points for which to calculate the gradients

	discrete (bool [https://docs.python.org/3/library/functions.html#bool]) – indicates whether we are in the continuous or discrete case

	size (int [https://docs.python.org/3/library/functions.html#int]) – if we are in the discrete case, indicates the size of the simplex

See also

egttools.plotting.plot_gradient, egttools.plotting.draw_invasion_diagram, egttools.analytical.replicator_equation, egttools.analytical.StochDynamics, Cite, -----, This

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from egttools.plotting.helpers import (xy_to_barycentric_coordinates, calculate_stationary_points,
 ... calculate_stability)
>>> from egttools.helpers.vectorized import (vectorized_replicator_equation,
 ... vectorized_barycentric_to_xy_coordinates)
>>> from egttools.analytical import replicator_equation
>>> simplex = Simplex2D()
>>> payoffs = np.array([[1, 0, 0],
 ... [0, 2, 0],
 ... [0, 0, 3]])
>>> v = np.asarray(xy_to_barycentric_coordinates(simplex.X, simplex.Y, simplex.corners))
>>> results = vectorized_replicator_equation(v, payoffs)
>>> xy_results = vectorized_barycentric_to_xy_coordinates(results, simplex.corners)
>>> Ux = xy_results[:, :, 0].astype(np.float64)
>>> Uy = xy_results[:, :, 1].astype(np.float64)
>>> calculate_gradients = lambda u: replicator_equation(u, payoffs)
>>> roots, roots_xy = calculate_stationary_points(simplex.trimesh.x, simplex.trimesh.y,
 ... simplex.corners, calculate_gradients)
>>> stability = calculate_stability(roots, calculate_gradients)
>>> type_labels = ['A', 'B', 'C']
>>> fig, ax = plt.subplots(figsize=(10,8))
>>> plot = (simplex.add_axis(ax=ax)
 apply_simplex_boundaries_to_gradients(Ux, Uy)
 draw_triangle()
 draw_gradients(zorder=0)
 add_colorbar()
 draw_stationary_points(roots_xy, stability)
 add_vertex_labels(type_labels)
 draw_trajectory_from_roots(lambda u, t: replicator_equation(u, payoffs),
 ... roots,
 ... stability,
 ... trajectory_length=15,
 ... linewidth=1,
 ... step=0.01,
 ... color='k', draw_arrow=True, arrowdirection='right',
 ... arrowsize=30, zorder=4, arrowstyle='fancy')
 draw_scatter_shadow(lambda u, t: replicator_equation(u, payoffs), 300, color='gray',
 ... marker='.', s=0.1, zorder=0)

[image: ../_images/simplex_example_infinite_pop_1.png]
>>> plot = (simplex.add_axis(ax=ax)
 apply_simplex_boundaries_to_gradients(Ux, Uy)
 draw_triangle()
 draw_stationary_points(roots_xy, stability)
 add_vertex_labels(type_labels)
 draw_trajectory_from_roots(lambda u, t: replicator_equation(u, payoffs),
 ... roots,
 ... stability,
 ... trajectory_length=15,
 ... linewidth=1,
 ... step=0.01,
 ... color='k', draw_arrow=True, arrowdirection='right',
 ... arrowsize=30, zorder=4, arrowstyle='fancy')
 draw_scatter_shadow(lambda u, t: replicator_equation(u, payoffs), 300, color='gray',
 ... marker='.', s=0.1, zorder=0)

[image: ../_images/simplex_example_infinite_pop_2.png]

	
add_axis(figsize=(10, 8), ax=None)

	Creates or stores a new axis inside the class.

	Parameters

	
	figsize (Optional[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]) – The size of the figure. This argument is only used if no ax is given.

	ax (Optional[matplotlib.pyplot.axis]) – If given, the axis will be stored inside the object. Otherwise, a new axis will be created.

	Returns

	The class object.

	Return type

	Simplex2D

	
add_colorbar(aspect=10, anchor=(-0.5, 0.5), panchor=(0, 0), shrink=0.6, label='gradient of selection', label_rotation=270, label_fontsize=16, labelpad=20)

	Adds a color bar to indicate the meaning of the colors of the plotted gradients.
This should only be used if the gradients were plotted and the colors have been drawn in function
of the strength of the gradient.

	Parameters

	
	aspect (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Aspect ration of the color bar.

	anchor (Optional[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]) – Anchor point for the color bar.

	panchor (Optional[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]) –

	shrink (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Ration for shrinking the color bar.

	label (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Label for the color bar.

	label_rotation (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Rotation of the label.

	label_fontsize (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Font size of the label.

	labelpad (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – How much padding should be added to the label.

	Returns

	A reference to the class object.

	Return type

	Simplex2D

	
add_edges_with_random_drift(random_drift_edges)

	Adds information to the class about which edges have random drift.

This will be used to avoid plotting a lot equilibria alongside an edge.

	Parameters

	random_drift_edges (List[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]) – A list of tuples which indicate the (undirected) edges in which there is random drift.

	Returns

	The class object.

	Return type

	Simplex2D

	
add_vertex_labels(labels, epsilon_bottom=0.05, epsilon_top=0.05, fontsize=16, horizontalalignment='center')

	Adds labels to the vertices of the triangle that represents the 2-simplex.

	Parameters

	
	labels (Union[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A tuple or a list containing 3 strings that give name to the vertices of the triangle. The order is
bottom left corner, top corner, bottom right corner.

	epsilon_bottom (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – How much separation should the label have from the bottom vertices

	epsilon_top (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – How much separation should the label have from the top vertex.

	fontsize (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Font size for the labels.

	horizontalalignment (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Horizontal alignment for the label text.

	Returns

	A reference to the current object.

	Return type

	Simplex2D

	
apply_simplex_boundaries_to_gradients(u, v)

	Applies boundaries of the triangle to a list of gradient values over the cartesian grid.

The boundaries are applied using the X Y grid defined in the instantiation of the class.

	Parameters

	
	u (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The X component of the gradients.

	v (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The Y component of the gradients

	Returns

	A reference to the class object.

	Return type

	Simplex2D

	
draw_gradients(arrowsize=2, arrowstyle='fancy', color=None, density=1, linewidth=1.5, cmap='viridis', zorder=0)

	Draws the gradients inside the unit simplex using a streamplot.

	Parameters

	
	arrowsize (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The size of the arrows of the gradients

	arrowstyle (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The style of the arrows. See matplotlib arrowstyles.

	color (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – The color of the arrows. If no color is given, it will be generated as a function of the gradients.

	density (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The density of arrows (how many arrows) to plot.

	linewidth (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The width of the arrows.

	cmap (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], matplotlib.colors.Colormap]]) – The color map to be used.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which the gradients should appear in the plot (above or below other elements).

	Returns

	A reference to the class object.

	Return type

	Simplex2D

	
draw_scatter_shadow(f, nb_trajectories, trajectory_length=15, step=0.1, s=0.1, color='whitesmoke', marker='.', zorder=0)

	Draws a series of point which follows trajectories in the simplex starting from random points.

The visual effect is as if there were shadows in the direction of the gradient.

	Parameters

	
	f (Callable[[np.ndarray, int [https://docs.python.org/3/library/functions.html#int]], np.ndarray]) – Function that can calculate the gradient at any point in the simplex.

	nb_trajectories (int [https://docs.python.org/3/library/functions.html#int]) – Number of trajectories to draw.

	trajectory_length (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Length of the trajectory. This is used to calculate the amount of points odeint should calculate.

	step (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The step size in time to get to the maximum trajectory length. Together with trajectory_length
this indicates the amount of points odeint should calculate.

	s (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – Size of the points.

	color (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – The color of the points of the trajectory.

	marker (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Style of the points to be drawn. See matplotlib markers.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which this plot should appear in the figure (above or bellow other plots).

	Returns

	A reference to the current object.

	Return type

	Simplex2D

	
draw_stationary_distribution(stationary_distribution, cmap='binary', shading='gouraud', alpha=1.0, edgecolors='grey', vmin=None, vmax=None, zorder=0, colorbar=True, aspect=10, anchor=(-0.5, 0.5), panchor=(0, 0), shrink=0.6, label='stationary distribution', label_rotation=270, label_fontsize=16, labelpad=20)

	Draws the stationary distribution inside the simplex using a matplotlib.pyplot.tripcolor

	Parameters

	
	stationary_distribution (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array containing the values of the stationary distribution. The order of these points
must follow the order given by egttools.sample_simplex when iterating from 0-nb_states.

	cmap (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], matplotlib.colors.Colormap]]) – Color map to be used.

	shading (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Type of shading to be used in the plot. Can be either “gouraud” or “flat”.

	alpha (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The level of transparency.

	edgecolors (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The colors of the edges of the triangular grid.

	vmin (Optional[flaot]) – The minimum value to take into account for the color range to plot.

	vmax (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The maximum value to take into account for the color range to plot.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which this plot should appear in the figure (above or bellow other plots).

	colorbar (Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = True) – Indicates whether to add a color bar to the plot.

	aspect (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The aspect ration of the color bar.

	anchor (Optional[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]) – The anchor of the color bar.

	panchor (Optional[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]) – The panchor of the colorbar

	shrink (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Ratio of shrinking the color bar.

	label (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Label of the color bar.

	label_rotation (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Rotation of the label.

	label_fontsize (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Font size of the label.

	labelpad (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – How much padding should be added to the label.

	Returns

	A reference to the current object

	Return type

	Simplex2D

	
draw_stationary_points(roots, stability, zorder=5, linewidth=3, atol=1e-07)

	Draws the black circles for stable points and white circles for unstable ones.

	Parameters

	
	roots (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]]) – A list of arrays (or tuples) containing the cartesian coordinates of the roots.

	stability (Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][bool [https://docs.python.org/3/library/functions.html#bool]], List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]]) – A list of boolean or integer values indicating whether the root is stable. If there are integer values
-1 - unstable, 0 - saddle, 1 - stable.

	zorder (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Indicates in which order these points should appear in the figure (above or below other plots).

	linewidth (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – Width of the border of the circles that represents the roots.

	atol (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – Tolerance to consider a value equal to 0. Used to check if a point is on an edge.

	Returns

	A reference to the class object.

	Return type

	Simplex2D

	
draw_trajectories(f, nb_trajectories, trajectory_length=15, step=0.01, color='whitesmoke', ms=0.5, zorder=0)

	Draws trajectories inside the unit simplex starting from random initial points.

	Parameters

	
	f (Callable[[np.ndarray, int [https://docs.python.org/3/library/functions.html#int]], np.ndarray]) – Function that can calculate the gradient at any point in the simplex.

	nb_trajectories (int [https://docs.python.org/3/library/functions.html#int]) – Number of trajectories to draw.

	trajectory_length (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Length of the trajectory. This is used to calculate the amount of points odeint should calculate.

	step (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The step size in time to get to the maximum trajectory length. Together with trajectory_length
this indicates the amount of points odeint should calculate.

	color (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – The color of the points of the trajectory.

	ms (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The size of the points.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which this plot should appear in the figure (above or bellow other plots).

	Returns

	A reference to the current object.

	Return type

	Simplex2D

	
draw_trajectory_from_points(f, points, trajectory_length=15, step=0.1, color='k', linewidth=0.5, zorder=0, draw_arrow=False, arrowstyle='fancy', arrowsize=50, position=None, arrowdirection='right')

	Draws trajectories inside the unit simplex starting from the indicated points.

	Parameters

	
	f (Callable[[np.ndarray, int [https://docs.python.org/3/library/functions.html#int]], np.ndarray]) – Function that can calculate the gradient at any point in the simplex.

	points (List[np.ndarray[np.float64[3,m]]) – A list of points in barycentric coordinates from which the trajectories should start.

	trajectory_length (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Length of the trajectory. This is used to calculate the amount of points odeint should calculate.

	step (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The step size in time to get to the maximum trajectory length. Together with trajectory_length
this indicates the amount of points odeint should calculate.

	color (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – The color of the points of the trajectory.

	linewidth (Optional[float [https://docs.python.org/3/library/functions.html#float]] = 0.5) – Width of the line to be plot.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which this plot should appear in the figure (above or bellow other plots).

	draw_arrow (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Indicates whether to draw an arrow along the trajectory.

	arrowstyle (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Indicates the style of the arrow to be plotted.

	arrowsize (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The size of the arrow.

	position (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Where should the arrow be pltoted.

	arrowdirection (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Indicates whether the arrow should be plotted in the direction of the advancing trajectory (right) or
the opposite.

	Returns

	A reference to the current object.

	Return type

	Simplex2D

	
draw_trajectory_from_roots(f, roots, stability, trajectory_length=15, step=0.1, perturbation=0.01, color='k', linewidth=0.5, zorder=0, draw_arrow=False, arrowstyle='fancy', arrowsize=50, position=None, arrowdirection='right', atol=1e-07)

	Draws trajectories inside the unit simplex starting from the stationary points.

	Parameters

	
	f (Callable[[np.ndarray, int [https://docs.python.org/3/library/functions.html#int]], np.ndarray]) – Function that can calculate the gradient at any point in the simplex.

	roots (List[np.ndarray[np.float64[3,m]]) – A list of points in barycentric coordinates from which the trajectories should start.

	stability (List[bool [https://docs.python.org/3/library/functions.html#bool]]) – Indicates whether the root is a stable or unstable point.

	trajectory_length (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Length of the trajectory. This is used to calculate the amount of points odeint should calculate.

	step (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The step size in time to get to the maximum trajectory length. Together with trajectory_length
this indicates the amount of points odeint should calculate.

	perturbation (Optional[Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]]) – Indicates how much perturbation should be applied to the root to start drawing the trajectory.
If no perturbation is applied, since the gradient is 0, the system will never leave the root.

	color (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – The color of the points of the trajectory.

	linewidth (Optional[float [https://docs.python.org/3/library/functions.html#float]] = 0.5) – Width of the line to be plot.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which this plot should appear in the figure (above or bellow other plots).

	draw_arrow (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Indicates whether to draw an arrow along the trajectory.

	arrowstyle (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Indicates the style of the arrow to be plotted.

	arrowsize (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The size of the arrow.

	position (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Where should the arrow be pltoted.

	arrowdirection (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Indicates whether the arrow should be plotted in the direction of the advancing trajectory (right) or
the opposite.

	atol (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Tolerance to consider a value equal to 0. Used to check if a point is on an edge of the simplex.

	Returns

	A reference to the current object.

	Return type

	Simplex2D

	
draw_trajectory_from_vector(trajectory, color='k', linewidth=0.5, zorder=0)

	

	
draw_triangle(color='k', linewidth=2, linewidth_random_drift=4)

	Draws the borders of a triangle enclosing the 2-simplex.

	Parameters

	
	color (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The color of the borders of the triangle.

	linewidth (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The width of the borders of the triangle.

	linewidth_random_drift (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The width of the dashed line that represents the edges with random drift.

	Returns

	A refernece to the class object.

	Return type

	Simplex2D

	
get_figure_and_axis()

	Returns the stored figure and axis.

	Returns

	The figure and axis stored in the current object.

	Return type

	Tuple[matplotlib.pyplot.figure, matplotlib.pyplot.axis]

	
__annotations__ = {}

	

	
corners = array([[0. , 0.], [0.5 , 0.8660254], [1. , 0.]])

	

	
refiner = <matplotlib.tri.trirefine.UniformTriRefiner object>

	

	
side_slope = 1.7320508075688772

	

	
top_corner = 0.8660254037844386

	

	
triangle = <matplotlib.tri.triangulation.Triangulation object>

	

	
trimesh = <matplotlib.tri.triangulation.Triangulation object>

	

egttools.plotting.simplex2d.TypeVar

	
class TypeVar(name, *constraints, bound=None, covariant=False, contravariant=False)

	Bases: _Final, _Immutable

Type variable.

Usage:

T = TypeVar('T') # Can be anything
A = TypeVar('A', str, bytes) # Must be str or bytes

Type variables exist primarily for the benefit of static type
checkers. They serve as the parameters for generic types as well
as for generic function definitions. See class Generic for more
information on generic types. Generic functions work as follows:

	def repeat(x: T, n: int) -> List[T]:
	‘’’Return a list containing n references to x.’’’
return [x]*n

	def longest(x: A, y: A) -> A:
	‘’’Return the longest of two strings.’’’
return x if len(x) >= len(y) else y

The latter example’s signature is essentially the overloading
of (str, str) -> str and (bytes, bytes) -> bytes. Also note
that if the arguments are instances of some subclass of str,
the return type is still plain str.

At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError.

Type variables defined with covariant=True or contravariant=True
can be used to declare covariant or contravariant generic types.
See PEP 484 for more details. By default generic types are invariant
in all type variables.

Type variables can be introspected. e.g.:

T.__name__ == ‘T’
T.__constraints__ == ()
T.__covariant__ == False
T.__contravariant__ = False
A.__constraints__ == (str, bytes)

Note that only type variables defined in global scope can be pickled.

Methods

	
__copy__()

	

	
__deepcopy__(memo)

	

	
__init__(name, *constraints, bound=None, covariant=False, contravariant=False)

	

	
classmethod __init_subclass__(*args, **kwds)

	This method is called when a class is subclassed.

The default implementation does nothing. It may be
overridden to extend subclasses.

	
__reduce__()

	Helper for pickle.

	
__repr__()

	Return repr(self).

	
__bound__

	

	
__constraints__

	

	
__contravariant__

	

	
__covariant__

	

	
__name__

	

	
__slots__ = ('__name__', '__bound__', '__constraints__', '__covariant__', '__contravariant__')

	

egttools.plotting.simplified

Simplified plotting functions

Functions

	barycentric_to_xy_coordinates

	Transforms barycentric into cartesian coordinates.

	calculate_nb_states

	Calculates the number of states (combinations) of the members of a group in a subgroup.

	calculate_stability

	Calculates the stability of the roots.

	check_if_there_is_random_drift

	Checks if there is random drift along the edge between two strategies in the simplex.

	check_replicator_stability_pairwise_games

	Calculates the stability of the roots assuming that they are from a system governed by the replicator equation (this function uses the Jacobian of the replicator equation in pairwise games to calculate the stability).

	find_roots

	Searches for the roots of the given differential equation.

	find_roots_in_discrete_barycentric_coordinates

	Searches for the roots inside the simplex and returns them in barycentric coordinates.

	plot_pairwise_comparison_rule_dynamics_in_simplex

	Helper function to simplify the plotting of the moran dynamics in a 2 Simplex.

	plot_pairwise_comparison_rule_dynamics_in_simplex_without_roots

	Helper function to simplify the plotting of the moran dynamics in a 2 Simplex.

	plot_replicator_dynamics_in_simplex

	Helper function to simplify the plotting of the replicator dynamics in a 2 Simplex.

	replicator_equation

	Produces the discrete time derivative of the replicator dynamics

	replicator_equation_n_player

	Calculates the gradient of the replicator dynamics given the current population state.

	vectorized_barycentric_to_xy_coordinates

	Transform a tensor of barycentric coordinates to cartesian coordinates.

	vectorized_replicator_equation

	This function provides an easy way to calculate a matrix of gradients in a simplex in one go.

	vectorized_replicator_equation_n_player

	This function provides an easy way to calculate a matrix of gradients in a simplex in one go.

	xy_to_barycentric_coordinates

	Transforms cartesian into barycentric coordinates.

Classes

	AbstractGame

	Abstract class which must be implemented by any new game.

	Matrix2PlayerGameHolder

	Holder class for 2-player games for which the expected payoff between strategies has already been calculated.

	MatrixNPlayerGameHolder

	Holder class for N-player games for which the expected payoff between strategies has already been calculated.

	PairwiseComparison

	A class containing methods to study analytically the evolutionary dynamics using the Pairwise comparison rule.

	Simplex2D

	Plots a 2-dimensional simplex in a cartesian plane.

egttools.plotting.simplified.barycentric_to_xy_coordinates

	
barycentric_to_xy_coordinates(point_barycentric, corners)

	Transforms barycentric into cartesian coordinates.

	Parameters

	
	point_barycentric (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array containing the 3 barycentric coordinates.

	corners (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An matrix containing the cartesian coordinates of the corners of the triangle that represents the 2-simplex.

	Returns

	An array containing the cartesian coordinates of the input point.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

egttools.plotting.simplified.calculate_nb_states

	
calculate_nb_states(group_size: int [https://docs.python.org/3/library/functions.html#int], nb_strategies: int [https://docs.python.org/3/library/functions.html#int]) → object [https://docs.python.org/3/library/functions.html#object]

	Calculates the number of states (combinations) of the members of a group in a subgroup.

It can be used to calculate the maximum number of states in a discrete simplex.

The implementation of this method follows the stars and bars algorithm (see Wikipedia).

	Parameters

	
	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group (maximum number of players/elements that can adopt each possible strategy).

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies that can be assigned to players.

	Returns

	Number of states (possible combinations of strategies and players).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

See also

egttools.numerical.calculate_state, egttools.numerical.sample_simplex

egttools.plotting.simplified.calculate_stability

	
calculate_stability(roots, f)

	Calculates the stability of the roots. It will return a list indicating whether each root
is or not stable.

	Parameters

	
	roots (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A list or arrays which contain the barycentric coordinates of the roots.

	f (Callable[[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A function which computes the gradient at any point in the simplex.

	Returns

	A list of booleans indicating whether each root is or not stable.

	Return type

	List[bool [https://docs.python.org/3/library/functions.html#bool]]

egttools.plotting.simplified.check_if_there_is_random_drift

	
check_if_there_is_random_drift(payoff_matrix, population_size=None, group_size=2, beta=None, nb_points=10, atol=1e-07)

	Checks if there is random drift along the edge between two strategies in the simplex.

	Parameters

	
	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The square matrix of payoffs. If the game is pairwise (group_size = 2) then each entry
represents the payoff of the row strategy vs the column strategy. If the group_size > 2, then
each entry should be a function that will return the payoff of the row strategy in a group of size N
with N-k members of the column strategy. If you only have a matrix where the columns
represent all possible game states, then you can use the function egttools.utils.transform_payoffs_to_pairwise
to get a matrix in the correct form.

	population_size (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The size of the population. If this value is not given, we assume that
we calculate the dynamics in infinite populations using the replicator_equation.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the group. If you specify population size, you should also specify this value. By default we assume
that the game is pairwise.

	beta (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The intensity of selection.If you specify population size, you should also specify this value.

	nb_points (int [https://docs.python.org/3/library/functions.html#int]) – Number of points for which to check the gradient. It is 10 by default.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance to consider a value zero

	Returns

	A list of tuples indicating the undirected edged where there should be random drift.

	Return type

	List[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]

egttools.plotting.simplified.check_replicator_stability_pairwise_games

	
check_replicator_stability_pairwise_games(stationary_points, payoff_matrix, atol_neg=0.0001, atol_pos=0.0001, atol_zero=0.0001)

	Calculates the stability of the roots assuming that they are from a system governed by the replicator
equation (this function uses the Jacobian of the replicator equation in pairwise games to calculate the
stability).

	Parameters

	
	stationary_points (List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – a list of stationary points (represented as numpy.ndarray).

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a payoff matrix represented as a numpy.ndarray.

	atol_neg (float [https://docs.python.org/3/library/functions.html#float]) – tolerance to consider a value negative.

	atol_pos (float [https://docs.python.org/3/library/functions.html#float]) – tolerance to consider a value positive.

	atol_zero (float [https://docs.python.org/3/library/functions.html#float]) – tolerance to determine if a value is zero.

	Returns

	A list of integers indicating the stability of the stationary points for the replicator equation:
1 - stable
-1 - unstable
0 - saddle

	Return type

	List[int [https://docs.python.org/3/library/functions.html#int]]

egttools.plotting.simplified.find_roots

	
find_roots(gradient_function, nb_strategies, nb_initial_random_points=3, atol=1e-07, tol_close_points=0.0001, method='hybr')

	Searches for the roots of the given differential equation.

	Parameters

	
	gradient_function (Callable[[np.ndarray], np.ndarray]) – function that returns a numpy.ndarray with the gradient of every strategy/type given a
current population state.

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies/types present in the population.

	nb_initial_random_points (int [https://docs.python.org/3/library/functions.html#int]) – number of random points to use as initial states for the root function. These are
additional to the vertex of the simplex.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – tolerance for considering that a point is in the simplex.

	tol_close_points (float [https://docs.python.org/3/library/functions.html#float]) – tolerance for considering that two points are equal.

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – one of the options described in scipy.optimize.root
(see https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html)

	Returns

	A list of tuples with the identified roots/stationary points.

	Return type

	List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

egttools.plotting.simplified.find_roots_in_discrete_barycentric_coordinates

	
find_roots_in_discrete_barycentric_coordinates(f, simplex_size, nb_edge_points=None, nb_interior_points=1000, delta=1e-12, atol=0.001)

	Searches for the roots inside the simplex and returns them in barycentric coordinates.

	Parameters

	
	f (Callable[[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A function that calculates the gradient of any point inside the simplex.

	simplex_size (int [https://docs.python.org/3/library/functions.html#int]) – Discrete size of the edges of the simplex. This should correspond to the size of the finite population
in Moran dynamics.

	nb_edge_points (int [https://docs.python.org/3/library/functions.html#int]) – Can be used to explore more points than the existing simplex size.

	nb_interior_points (int [https://docs.python.org/3/library/functions.html#int]) – Number of points to explore inside the simplex.

	delta (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance to consider a point outside the unit simplex.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance to consider two roots to be equal.

	Returns

	A list with the barycentric coordinates of the roots.

	Return type

	List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

See also

egttools.plotting.helpers.calculate_stationary_points

egttools.plotting.simplified.plot_pairwise_comparison_rule_dynamics_in_simplex

	
plot_pairwise_comparison_rule_dynamics_in_simplex(population_size, beta, payoff_matrix=None, game=None, group_size=2, atol=1e-07, figsize=(10, 8), ax=None)

	Helper function to simplify the plotting of the moran dynamics in a 2 Simplex.

	Parameters

	
	population_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the finite population.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	payoff_matrix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – The square payoff matrix. Group games are still unsupported in the replicator dynamics. This feature will
soon be added.

	game (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractGame]) – Game that should contain a set of payoff matrices

	group_size (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Size of the group. By default, we assume that interactions are pairwise (the group size is 2).

	atol (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – Tolerance to consider a value equal to zero. This is used to check if an edge has random drift. By default
the tolerance is 1e-7.

	figsize (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]) – Size of the figure. This parameter is only used if the ax parameter is not defined.

	ax (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][axis]) – A matplotlib figure axis.

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Simplex2D, Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], int [https://docs.python.org/3/library/functions.html#int]], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], List [https://docs.python.org/3/library/typing.html#typing.List][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], List [https://docs.python.org/3/library/typing.html#typing.List][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], List [https://docs.python.org/3/library/typing.html#typing.List][bool [https://docs.python.org/3/library/functions.html#bool]], AbstractGame, PairwiseComparison]

	Returns

	
	A tuple with the simplex object which can be used to add more features to the plot, the function that

	can be used to calculate gradients and should be passed to Simplex2D.draw_trajectory_from_roots and

	Simplex2D.draw_scatter_shadow, a list of the roots in barycentric coordinates, a list of the roots in

	cartesian coordinates and a list of booleans indicating whether the roots are stable. It also returns the

	game class (this is important, since a new game is created when passing a payoff matrix, and if not returned,

	a reference to the game instance will disappear, and it will produce a segmentation fault). Finally, it also returns

	a reference to the evolver object.

egttools.plotting.simplified.plot_pairwise_comparison_rule_dynamics_in_simplex_without_roots

	
plot_pairwise_comparison_rule_dynamics_in_simplex_without_roots(population_size, beta, payoff_matrix=None, game=None, group_size=2, figsize=(10, 8), ax=None)

	Helper function to simplify the plotting of the moran dynamics in a 2 Simplex.

	Parameters

	
	population_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the finite population.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection.

	payoff_matrix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – The square payoff matrix.

	game (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractGame]) – Game that should contain a set of payoff matrices

	group_size (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Size of the group. By default, we assume that interactions are pairwise (the group size is 2).

	figsize (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]) – Size of the figure. This parameter is only used if the ax parameter is not defined.

	ax (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][axis]) – A matplotlib figure axis.

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Simplex2D, Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], int [https://docs.python.org/3/library/functions.html#int]], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], AbstractGame, PairwiseComparison]

	Returns

	
	A tuple with the simplex object which can be used to add more features to the plot, the function that

	can be used to calculate gradients and should be passed to Simplex2D.draw_trajectory_from_roots and

	Simplex2D.draw_scatter_shadow, a list of the roots in barycentric coordinates, a list of the roots in

	cartesian coordinates and a list of booleans indicating whether the roots are stable. It also returns the

	game class (this is important, since a new game is created when passing a payoff matrix, and if not returned,

	a reference to the game instance will disappear, and it will produce a segmentation fault). Finally, it also returns

	a reference to the evolver object.

egttools.plotting.simplified.plot_replicator_dynamics_in_simplex

	
plot_replicator_dynamics_in_simplex(payoff_matrix, group_size=2, nb_points_simplex=100, nb_of_initial_points_for_root_search=10, atol=1e-07, atol_equal=1e-12, method_find_roots='hybr', atol_stability_pos=0.0001, atol_stability_neg=0.0001, atol_stability_zero=0.0001, figsize=(10, 8), ax=None)

	Helper function to simplify the plotting of the replicator dynamics in a 2 Simplex.

	Parameters

	
	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The square payoff matrix. Group games are still unsupported in the replicator dynamics. This feature will
soon be added.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group

	nb_points_simplex (int [https://docs.python.org/3/library/functions.html#int]) – Number of initial points to draw in the simplex

	nb_of_initial_points_for_root_search (int [https://docs.python.org/3/library/functions.html#int]) – Number of initial points used in the method that searches for the roots of the replicator equation

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance to consider a value equal to zero. This is used to check if an edge has random drift. By default,
the tolerance is 1e-7.

	atol_equal (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance to consider two arrays equal.

	method_find_roots (str [https://docs.python.org/3/library/stdtypes.html#str]) – Method used in scipy.optimize.root

	atol_stability_neg (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance used to determine the stability of the roots. This is used to determine whether an
eigenvalue is negative.

	atol_stability_pos (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance used to determine the stability of the roots. This is used to determine whether an
eigenvalue is positive.

	atol_stability_zero (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance used to determine the stability of the roots. This is used to determine whether an
eigenvalue is zero.

	figsize (Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – Size of the figure. This parameter is only used if the ax parameter is not defined.

	ax (Optional[matplotlib.pyplot.axis]) – A matplotlib figure axis.

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Simplex2D, Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], int [https://docs.python.org/3/library/functions.html#int]], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], List [https://docs.python.org/3/library/typing.html#typing.List][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], List [https://docs.python.org/3/library/typing.html#typing.List][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]]

	Returns

	
	Tuple[Simplex2D, Callable[[numpy.ndarray, int], numpy.ndarray], List[numpy.ndarray], List[numpy.ndarray], List[int]]

	A tuple with the simplex object which can be used to add more features to the plot, the function that

	can be used to calculate gradients and should be passed to Simplex2D.draw_trajectory_from_roots and

	Simplex2D.draw_scatter_shadow, a list of the roots in barycentric coordinates, a list of the roots in

	cartesian coordinates and a list of booleans or integers indicating whether the roots are stable.

egttools.plotting.simplified.replicator_equation

	
replicator_equation(x, payoffs)

	Produces the discrete time derivative of the replicator dynamics

This only works for 2-player games.

	Parameters

	
	x (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,1]]) – array containing the frequency of each strategy in the population.

	payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]) – payoff matrix

	Returns

	time derivative of x

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.analytical.StochDynamics, egttools.numerical.PairwiseComparisonNumerical

egttools.plotting.simplified.replicator_equation_n_player

	
replicator_equation_n_player(frequencies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]], payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]], group_size: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Calculates the gradient of the replicator dynamics given the current population state.

	Parameters

	
	frequencies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Vector of frequencies of each strategy in the population (it must have
shape=(nb_strategies,)

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A payoff matrix containing the payoff of each row strategy for each
possible group configuration, indicated by the column index.
The matrix must have shape (nb_strategies, nb_group_configurations).

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group

	Returns

	A vector with the gradient for each strategy. The vector has shape (nb_strategies,)

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.analytical.replicator_equation, egttools.numerical.PairwiseComparison, egttools.numerical.PairwiseComparisonNumerical, egttools.analytical.StochDynamics, egttools.games.AbstractGame

egttools.plotting.simplified.vectorized_barycentric_to_xy_coordinates

	
vectorized_barycentric_to_xy_coordinates(barycentric_coordinates, corners)

	Transform a tensor of barycentric coordinates to cartesian coordinates.

	Parameters

	
	barycentric_coordinates (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][3,m,n]) – Expects a matrix in which the first dimension corresponds to the vector of 3-demensional barycentric
coordinates.

	corners (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][3,]) – The corners of the triangle

	Returns

	The tensor of cartesian coordinates.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][2,m,n]

egttools.plotting.simplified.vectorized_replicator_equation

	
vectorized_replicator_equation(frequencies, payoffs)

	This function provides an easy way to calculate a matrix of gradients in a simplex in one go.

The input frequencies is expected to be a 3 dimensional tensor of shape (p, m, n) while the payoffs
matrix is expected to be of shape (p, p).

The main intention of this helper function is to facilitate
the calculation of the gradients that are required by the plot_gradients method of the
egttools.Simplex2D class.

	Parameters

	
	frequencies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][p,m,n]) – A 3 dimensional tensor containing the set of population frequencies for which the gradient should be
calculated.

	payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][p,p]) – A 2 dimensional matrix containing the payoffs of the game.

	Returns

	The gradients for each of the input frequencies.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][p,m,n]

egttools.plotting.simplified.vectorized_replicator_equation_n_player

	
vectorized_replicator_equation_n_player(frequencies, payoffs, group_size)

	This function provides an easy way to calculate a matrix of gradients in a simplex in one go.

The input frequencies is expected to be a 3 dimensional tensor of shape (p, m, n) while the payoffs
matrix is expected to be of shape (p, p).

The main intention of this helper function is to facilitate
the calculation of the gradients that are required by the plot_gradients method of the
egttools.Simplex2D class.

	Parameters

	
	frequencies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][p,m,n]) – A 3 dimensional tensor containing the set of population frequencies for which the gradient should be
calculated.

	payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][p,p]) – A 2 dimensional matrix containing the payoffs of the game.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the group

	Returns

	The gradients for each of the input frequencies.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][p,m,n]

egttools.plotting.simplified.xy_to_barycentric_coordinates

	
xy_to_barycentric_coordinates(x, y, corners)

	Transforms cartesian into barycentric coordinates.

	Parameters

	
	x (Union[float [https://docs.python.org/3/library/functions.html#float], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – first component of the cartesian coordinates

	y (Union[float [https://docs.python.org/3/library/functions.html#float], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – second component of the cartesian coordinates

	corners (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a list or a vector containing the coordinates of the corners

	Returns

	The transformmation of the coordinates into barycentric.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Examples

>>> from egttools.plotting import Simplex2D
>>> simplex = Simplex2D()
>>> cartesian_coords = np.array([0.2, 0.])
>>> xy_to_barycentric_coordinates(cartesian_coords[0], cartesian_coords[1], simplex.corners)
array([0.2, 0.])

egttools.plotting.simplified.AbstractGame

	
class AbstractGame(self: egttools.numerical.numerical.games.AbstractGame)

	Bases: pybind11_object

Abstract class which must be implemented by any new game.

This class provides a common interface for Games, so that they can be passed to the methods
(both analytical and numerical) implemented in egttools.

You must implement the following methods:
- play(group_composition: List[int], game_payoffs: List[float]) -> None
- calculate_payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- calculate_fitness(strategy_index: int, pop_size: int, strategies: numpy.ndarray[numpy.uint64[m, 1]]) -> float
- __str__
- type() -> str
- payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- payoff(strategy: int, group_composition: List[int]) -> float
- nb_strategies() -> int
- save_payoffs(file_name: str) -> None

See also

egttools.games.AbstractNPlayerGame

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	
__init__(self: egttools.numerical.numerical.games.AbstractGame) → None [https://docs.python.org/3/library/constants.html#None]

	Abstract class which must be implemented by any new game.

This class provides a common interface for Games, so that they can be passed to the methods
(both analytical and numerical) implemented in egttools.

You must implement the following methods:
- play(group_composition: List[int], game_payoffs: List[float]) -> None
- calculate_payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- calculate_fitness(strategy_index: int, pop_size: int, strategies: numpy.ndarray[numpy.uint64[m, 1]]) -> float
- __str__
- type() -> str
- payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- payoff(strategy: int, group_composition: List[int]) -> float
- nb_strategies() -> int
- save_payoffs(file_name: str) -> None

See also

egttools.games.AbstractNPlayerGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.AbstractGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs(self: egttools.numerical.numerical.games.AbstractGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(self: egttools.numerical.numerical.games.AbstractGame, group_composition: List[int [https://docs.python.org/3/library/functions.html#int]], game_payoffs: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	
save_payoffs(self: egttools.numerical.numerical.games.AbstractGame, file_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	
type(self: egttools.numerical.numerical.games.AbstractGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

egttools.plotting.simplified.Matrix2PlayerGameHolder

	
class Matrix2PlayerGameHolder(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]])

	Bases: AbstractGame

Holder class for 2-player games for which the expected payoff between strategies has already been calculated.

This class is useful to store the matrix of expected payoffs between strategies
in an 2-player game and keep the methods to calculate the fitness between these strategies.

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies in the game

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – matrix of shape (nb_strategies, nb_strategies) containing the payoffs
of each strategy against any other strategy.

See also

egttools.games.Matrix2NlayerGameHolder, egttools.games.AbstractGame

Methods

	calculate_fitness

	Calculates the fitness of a strategy given a population state.

	calculate_payoffs

	Calculates the payoffs of every strategy in each possible group composition.

	nb_strategies

	Number of different strategies which are playing the game.

	payoff

	returns the payoff of a strategy given a group composition.

	payoffs

	returns the expected payoffs of each strategy vs each possible game state

	play

	Plays the One-shop CRD and update the game_payoffs given the group_composition.

	save_payoffs

	Saves the payoff matrix in a txt file.

	type

	

	update_payoff_matrix

	updates the values of the payoff matrix.

	
__init__(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]) → None [https://docs.python.org/3/library/constants.html#None]

	Holder class for 2-player games for which the expected payoff between strategies has already been calculated.

This class is useful to store the matrix of expected payoffs between strategies
in an 2-player game and keep the methods to calculate the fitness between these strategies.

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies in the game

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – matrix of shape (nb_strategies, nb_strategies) containing the payoffs
of each strategy against any other strategy.

See also

egttools.games.Matrix2NlayerGameHolder, egttools.games.AbstractGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder, player_strategy: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], population_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Calculates the fitness of a strategy given a population state.

	Parameters

	
	player_type (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy whose fitness will be calculated.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population (Z).

	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A vector containing the counts of each strategy in the population.

	Returns

	The fitness of the strategy in the current population state.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Calculates the payoffs of every strategy in each possible group composition.

	Returns

	A matrix containing the payoff of each strategy in every possible group composition.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
nb_strategies(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies which are playing the game.

	
payoff(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder, strategy: int, strategy pair: List[int]) → float [https://docs.python.org/3/library/functions.html#float]

	returns the payoff of a strategy given a group composition.

	
payoffs(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	returns the expected payoffs of each strategy vs each possible game state

	
play(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder, arg0: List[int [https://docs.python.org/3/library/functions.html#int]], arg1: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Plays the One-shop CRD and update the game_payoffs given the group_composition.

We always assume that strategy 0 is D and strategy 1 is C.

The payoffs of Defectors and Cooperators are described by the following equations:

\[\begin{align}\begin{aligned}\Pi_{D}(k) = b\{\theta(k-M)+ (1-r)[1 - \theta(k-M)]\}\\\Pi_{C}(k) = \Pi_{D}(k) - cb\\\text{where } \theta(x) = 0 \text{if } x < 0 \text{ and 1 otherwise.}\end{aligned}\end{align} \]

	Parameters

	
	group_composition (Union[List[int [https://docs.python.org/3/library/functions.html#int]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A list or array containing the counts of how many members of each strategy are
present in the group.

	game_payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A vector in which the payoffs of the game will be stored.

	
save_payoffs(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder, arg0: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Saves the payoff matrix in a txt file.

	
type(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
update_payoff_matrix(self: egttools.numerical.numerical.games.Matrix2PlayerGameHolder, payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]) → None [https://docs.python.org/3/library/constants.html#None]

	updates the values of the payoff matrix.

egttools.plotting.simplified.MatrixNPlayerGameHolder

	
class MatrixNPlayerGameHolder(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int], payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]])

	Bases: AbstractGame

Holder class for N-player games for which the expected payoff between strategies has already been calculated.

This class is useful to store the matrix of expected payoffs between strategies
in an N-player game and keep the methods to calculate the fitness between these strategies.

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies in the game

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – matrix of shape (nb_strategies, nb_group_configurations) containing the payoffs
of each strategy against any other strategy.

See also

egttools.games.Matrix2PlayerGameHolder, egttools.games.AbstractGame

Methods

	calculate_fitness

	Calculates the fitness of a strategy given a population state.

	calculate_payoffs

	Calculates the payoffs of every strategy in each possible group composition.

	group_size

	Size of the group.

	nb_group_configurations

	Number of different group configurations.

	nb_strategies

	Number of different strategies which are playing the game.

	payoff

	returns the payoff of a strategy given a group composition.

	payoffs

	returns the expected payoffs of each strategy vs each possible game state

	play

	Plays the One-shop CRD and update the game_payoffs given the group_composition.

	save_payoffs

	Saves the payoff matrix in a txt file.

	type

	

	update_payoff_matrix

	updates the values of the payoff matrix.

	
__init__(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder, nb_strategies: int [https://docs.python.org/3/library/functions.html#int], group_size: int [https://docs.python.org/3/library/functions.html#int], payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]) → None [https://docs.python.org/3/library/constants.html#None]

	Holder class for N-player games for which the expected payoff between strategies has already been calculated.

This class is useful to store the matrix of expected payoffs between strategies
in an N-player game and keep the methods to calculate the fitness between these strategies.

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – number of strategies in the game

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the group

	payoff_matrix (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – matrix of shape (nb_strategies, nb_group_configurations) containing the payoffs
of each strategy against any other strategy.

See also

egttools.games.Matrix2PlayerGameHolder, egttools.games.AbstractGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder, player_strategy: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], population_state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Calculates the fitness of a strategy given a population state.

	Parameters

	
	player_type (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy whose fitness will be calculated.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population (Z).

	population_state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A vector containing the counts of each strategy in the population.

	Returns

	The fitness of the strategy in the current population state.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Calculates the payoffs of every strategy in each possible group composition.

	Returns

	A matrix containing the payoff of each strategy in every possible group composition.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
group_size(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder) → int [https://docs.python.org/3/library/functions.html#int]

	Size of the group.

	
nb_group_configurations(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different group configurations.

	
nb_strategies(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies which are playing the game.

	
payoff(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder, strategy: int, strategy pair: List[int]) → float [https://docs.python.org/3/library/functions.html#float]

	returns the payoff of a strategy given a group composition.

	
payoffs(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	returns the expected payoffs of each strategy vs each possible game state

	
play(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder, arg0: List[int [https://docs.python.org/3/library/functions.html#int]], arg1: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Plays the One-shop CRD and update the game_payoffs given the group_composition.

We always assume that strategy 0 is D and strategy 1 is C.

The payoffs of Defectors and Cooperators are described by the following equations:

\[\begin{align}\begin{aligned}\Pi_{D}(k) = b\{\theta(k-M)+ (1-r)[1 - \theta(k-M)]\}\\\Pi_{C}(k) = \Pi_{D}(k) - cb\\\text{where } \theta(x) = 0 \text{if } x < 0 \text{ and 1 otherwise.}\end{aligned}\end{align} \]

	Parameters

	
	group_composition (Union[List[int [https://docs.python.org/3/library/functions.html#int]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A list or array containing the counts of how many members of each strategy are
present in the group.

	game_payoffs (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A vector in which the payoffs of the game will be stored.

	
save_payoffs(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder, arg0: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Saves the payoff matrix in a txt file.

	
type(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
update_payoff_matrix(self: egttools.numerical.numerical.games.MatrixNPlayerGameHolder, payoff_matrix: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]) → None [https://docs.python.org/3/library/constants.html#None]

	updates the values of the payoff matrix.

egttools.plotting.simplified.PairwiseComparison

	
class PairwiseComparison(self: egttools.numerical.numerical.PairwiseComparison, population_size: int [https://docs.python.org/3/library/functions.html#int], game: egttools.numerical.numerical.games.AbstractGame)

	Bases: pybind11_object

A class containing methods to study analytically the evolutionary dynamics using the Pairwise comparison rule.

This class defines methods to compute fixation probabilities, transition matrices in the Small Mutation
Limit (SML), gradients of selection, and the full transition matrices of the system when considering
mutation > 0.

	Parameters

	
	population_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	game (egttools.games.AbstractGame) – A game object which must implement the abstract class egttools.games.AbstractGame.
This game will contain the expected payoffs for each strategy in the game, or at least
a method to compute it, and a method to calculate the fitness of each strategy for a given
population state.

See also

egttools.numerical.PairwiseComparisonNumerical, egttools.analytical.StochDynamics, egttools.games.AbstractGame

Note

Analytical computations should be avoided for problems with very large state spaces.
This means very big populations with many strategies. The bigger the state space, the
more memory and time these methods will require!

Also, for now it is not possible to update the game without having to instantiate PairwiseComparison
again. Hopefully, this will be fixed in the future.

Methods

	calculate_fixation_probability

	Calculates the fixation probability of an invading strategy in a population o resident strategy.

	calculate_gradient_of_selection

	Calculates the gradient of selection without mutation for the given state.

	calculate_transition_and_fixation_matrix_sml

	Calculates the transition matrix of the reduced Markov Chain that emerges when assuming SML.

	calculate_transition_matrix

	Computes the transition matrix of the Markov Chain which defines the population dynamics.

	game

	

	nb_states

	

	nb_strategies

	

	population_size

	

	update_population_size

	

	
__init__(self: egttools.numerical.numerical.PairwiseComparison, population_size: int [https://docs.python.org/3/library/functions.html#int], game: egttools.numerical.numerical.games.AbstractGame) → None [https://docs.python.org/3/library/constants.html#None]

	A class containing methods to study analytically the evolutionary dynamics using the Pairwise comparison rule.

This class defines methods to compute fixation probabilities, transition matrices in the Small Mutation
Limit (SML), gradients of selection, and the full transition matrices of the system when considering
mutation > 0.

	Parameters

	
	population_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the population.

	game (egttools.games.AbstractGame) – A game object which must implement the abstract class egttools.games.AbstractGame.
This game will contain the expected payoffs for each strategy in the game, or at least
a method to compute it, and a method to calculate the fitness of each strategy for a given
population state.

See also

egttools.numerical.PairwiseComparisonNumerical, egttools.analytical.StochDynamics, egttools.games.AbstractGame

Note

Analytical computations should be avoided for problems with very large state spaces.
This means very big populations with many strategies. The bigger the state space, the
more memory and time these methods will require!

Also, for now it is not possible to update the game without having to instantiate PairwiseComparison
again. Hopefully, this will be fixed in the future.

	
__new__(**kwargs)

	

	
calculate_fixation_probability(self: egttools.numerical.numerical.PairwiseComparison, invading_strategy_index: int [https://docs.python.org/3/library/functions.html#int], resident_strategy_index: int [https://docs.python.org/3/library/functions.html#int], beta: float [https://docs.python.org/3/library/functions.html#float]) → float [https://docs.python.org/3/library/functions.html#float]

	Calculates the fixation probability of an invading strategy in a population o resident strategy.

This method calculates the fixation probability of one mutant of the invading strategy
in a population where all other individuals adopt the resident strategy.

	Parameters

	
	index_invading_strategy (int [https://docs.python.org/3/library/functions.html#int]) – Index of the invading strategy

	index_resident_strategy (int [https://docs.python.org/3/library/functions.html#int]) – Index of the resident strategy

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection

	Returns

	The fixation probability of one mutant of the invading strategy in a population
where all other members adopt the resident strategy.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

See also

egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.fixation_probability, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.analytical.PairwiseComparison.calculate_gradient_of_selection, egttools.numerical.PairwiseComparisonNumerical, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_fixation_probability

	
calculate_gradient_of_selection(self: egttools.numerical.numerical.PairwiseComparison, beta: float [https://docs.python.org/3/library/functions.html#float], state: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, 1]]

	Calculates the gradient of selection without mutation for the given state.

This method calculates the gradient of selection (without mutation), which is, the
most likely direction of evolution of the system.

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection

	state (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Vector containing the counts of each strategy in the population.

	Returns

	Vector of shape (nb_strategies,) containing the gradient of selection, i.e.,
The most likely path of evolution of the stochastic system.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.full_gradient_selection, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.numerical.PairwiseComparisonNumerical, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse

	
calculate_transition_and_fixation_matrix_sml(self: egttools.numerical.numerical.PairwiseComparison, beta: float [https://docs.python.org/3/library/functions.html#float]) → Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]]

	Calculates the transition matrix of the reduced Markov Chain that emerges when assuming SML.

By assuming the limit of small mutations (SML), we can reduce the number of states of the dynamical system
to those which are monomorphic, i.e., the whole population adopts the same strategy.

Thus, the dimensions of the transition matrix in the SML is (nb_strategies, nb_strategies), and
the transitions are given by the normalized fixation probabilities. This means that a transition
where i neq j, T[i, j] = fixation(i, j) / (nb_strategies - 1) and T[i, i] = 1 - sum{T[i, j]}.

This method will also return the matrix of fixation probabilities,
where fixation_probabilities[i, j] gives the probability that one mutant j fixates in a population
of i.

	Parameters

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection

	Returns

	A tuple including the transition matrix and a matrix with the fixation probabilities.
Both matrices have shape (nb_strategies, nb_strategies).

	Return type

	Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

See also

egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.fixation_probability, egttools.analytical.StochDynamics.transition_and_fixation_matrix, egttools.analytical.PairwiseComparison.calculate_fixation_probability, egttools.analytical.PairwiseComparison.calculate_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.analytical.PairwiseComparison.calculate_gradient_of_selection, egttools.numerical.PairwiseComparisonNumerical, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse, egttools.numerical.PairwiseComparisonNumerical.estimate_fixation_probability

	
calculate_transition_matrix(self: egttools.numerical.numerical.PairwiseComparison, beta: float [https://docs.python.org/3/library/functions.html#float], mu: float [https://docs.python.org/3/library/functions.html#float]) → scipy.sparse.csr_matrix[numpy.float64]

	Computes the transition matrix of the Markov Chain which defines the population dynamics.

It is not advisable to use this method for very large state spaces since the memory required
to store the matrix might explode. In these cases you should resort to dimensional reduction
techniques, such as the Small Mutation Limit (SML).

	Parameters

	
	beta (float [https://docs.python.org/3/library/functions.html#float]) – Intensity of selection

	mu (float [https://docs.python.org/3/library/functions.html#float]) – Mutation rate

	Returns

	Sparse vector containing the transition probabilities from any population state to another.
This matrix will be of shape nb_states x nb_states.

	Return type

	scipy.sparse.csr_matrix

See also

egttools.analytical.StochDynamics, egttools.analytical.StochDynamics.calculate_full_transition_matrix, egttools.analytical.PairwiseComparison.calculate_transition_and_fixation_matrix_sml, egttools.numerical.PairwiseComparisonNumerical, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution, egttools.numerical.PairwiseComparisonNumerical.estimate_stationary_distribution_sparse

	
game(self: egttools.numerical.numerical.PairwiseComparison) → egttools.numerical.numerical.games.AbstractGame

	

	
nb_states(self: egttools.numerical.numerical.PairwiseComparison) → int [https://docs.python.org/3/library/functions.html#int]

	

	
nb_strategies(self: egttools.numerical.numerical.PairwiseComparison) → int [https://docs.python.org/3/library/functions.html#int]

	

	
population_size(self: egttools.numerical.numerical.PairwiseComparison) → int [https://docs.python.org/3/library/functions.html#int]

	

	
update_population_size(self: egttools.numerical.numerical.PairwiseComparison, arg0: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	

egttools.plotting.simplified.Simplex2D

	
class Simplex2D(nb_points=1000, discrete=False, size=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Plots a 2-dimensional simplex in a cartesian plane.

This class offers utility methods to plot gradients and equilibrium points on a 2-simplex (triangle).

The plotting is always done on the unit simplex for convenience. At the moment no rotations are
implemented, but we plan to add this feature, so that the triangle can be rotated before the plot.

We discern between continuous and discrete dynamics. The main reason is that this class’ objective
is to plot evolutionary dynamics on a simplex. When we are working with the replicator equation
it is straightforward to calculate all the gradients on the unit simplex. However, when working
with finite populations using the social learning model (social imitation), we are actually working
with a simplex with size equivalent to the population size (so all the dimensions of the simplex must
sum to Z) and we only consider discrete (integer) values inside the simplex (the population may
only have integer individuals). Of course this can be translated into frequencies, which gets us
back to the unit simplex, but it is not so simple to transform any value between 0-1 sampled with
numpy.linspace to a discrete value.

Therefore, for the discrete case, will will sample directly discrete points in barycentric
coordinates and only then, translate them into cartesian cooordinates.

	Parameters

	
	nb_points (int [https://docs.python.org/3/library/functions.html#int]) – number of points for which to calculate the gradients

	discrete (bool [https://docs.python.org/3/library/functions.html#bool]) – indicates whether we are in the continuous or discrete case

	size (int [https://docs.python.org/3/library/functions.html#int]) – if we are in the discrete case, indicates the size of the simplex

See also

egttools.plotting.plot_gradient, egttools.plotting.draw_invasion_diagram, egttools.analytical.replicator_equation, egttools.analytical.StochDynamics, Cite, -----, This

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from egttools.plotting.helpers import (xy_to_barycentric_coordinates, calculate_stationary_points,
 ... calculate_stability)
>>> from egttools.helpers.vectorized import (vectorized_replicator_equation,
 ... vectorized_barycentric_to_xy_coordinates)
>>> from egttools.analytical import replicator_equation
>>> simplex = Simplex2D()
>>> payoffs = np.array([[1, 0, 0],
 ... [0, 2, 0],
 ... [0, 0, 3]])
>>> v = np.asarray(xy_to_barycentric_coordinates(simplex.X, simplex.Y, simplex.corners))
>>> results = vectorized_replicator_equation(v, payoffs)
>>> xy_results = vectorized_barycentric_to_xy_coordinates(results, simplex.corners)
>>> Ux = xy_results[:, :, 0].astype(np.float64)
>>> Uy = xy_results[:, :, 1].astype(np.float64)
>>> calculate_gradients = lambda u: replicator_equation(u, payoffs)
>>> roots, roots_xy = calculate_stationary_points(simplex.trimesh.x, simplex.trimesh.y,
 ... simplex.corners, calculate_gradients)
>>> stability = calculate_stability(roots, calculate_gradients)
>>> type_labels = ['A', 'B', 'C']
>>> fig, ax = plt.subplots(figsize=(10,8))
>>> plot = (simplex.add_axis(ax=ax)
 apply_simplex_boundaries_to_gradients(Ux, Uy)
 draw_triangle()
 draw_gradients(zorder=0)
 add_colorbar()
 draw_stationary_points(roots_xy, stability)
 add_vertex_labels(type_labels)
 draw_trajectory_from_roots(lambda u, t: replicator_equation(u, payoffs),
 ... roots,
 ... stability,
 ... trajectory_length=15,
 ... linewidth=1,
 ... step=0.01,
 ... color='k', draw_arrow=True, arrowdirection='right',
 ... arrowsize=30, zorder=4, arrowstyle='fancy')
 draw_scatter_shadow(lambda u, t: replicator_equation(u, payoffs), 300, color='gray',
 ... marker='.', s=0.1, zorder=0)

[image: ../_images/simplex_example_infinite_pop_1.png]
>>> plot = (simplex.add_axis(ax=ax)
 apply_simplex_boundaries_to_gradients(Ux, Uy)
 draw_triangle()
 draw_stationary_points(roots_xy, stability)
 add_vertex_labels(type_labels)
 draw_trajectory_from_roots(lambda u, t: replicator_equation(u, payoffs),
 ... roots,
 ... stability,
 ... trajectory_length=15,
 ... linewidth=1,
 ... step=0.01,
 ... color='k', draw_arrow=True, arrowdirection='right',
 ... arrowsize=30, zorder=4, arrowstyle='fancy')
 draw_scatter_shadow(lambda u, t: replicator_equation(u, payoffs), 300, color='gray',
 ... marker='.', s=0.1, zorder=0)

[image: ../_images/simplex_example_infinite_pop_2.png]
Methods

	add_axis

	Creates or stores a new axis inside the class.

	add_colorbar

	Adds a color bar to indicate the meaning of the colors of the plotted gradients.

	add_edges_with_random_drift

	Adds information to the class about which edges have random drift.

	add_vertex_labels

	Adds labels to the vertices of the triangle that represents the 2-simplex.

	apply_simplex_boundaries_to_gradients

	Applies boundaries of the triangle to a list of gradient values over the cartesian grid.

	draw_gradients

	Draws the gradients inside the unit simplex using a streamplot.

	draw_scatter_shadow

	Draws a series of point which follows trajectories in the simplex starting from random points.

	draw_stationary_distribution

	Draws the stationary distribution inside the simplex using a matplotlib.pyplot.tripcolor

	draw_stationary_points

	Draws the black circles for stable points and white circles for unstable ones.

	draw_trajectories

	Draws trajectories inside the unit simplex starting from random initial points.

	draw_trajectory_from_points

	Draws trajectories inside the unit simplex starting from the indicated points.

	draw_trajectory_from_roots

	Draws trajectories inside the unit simplex starting from the stationary points.

	draw_trajectory_from_vector

	

	draw_triangle

	Draws the borders of a triangle enclosing the 2-simplex.

	get_figure_and_axis

	Returns the stored figure and axis.

Attributes

	corners

	

	refiner

	

	side_slope

	

	top_corner

	

	triangle

	

	trimesh

	

	
__init__(nb_points=1000, discrete=False, size=None)

	Plots a 2-dimensional simplex in a cartesian plane.

This class offers utility methods to plot gradients and equilibrium points on a 2-simplex (triangle).

The plotting is always done on the unit simplex for convenience. At the moment no rotations are
implemented, but we plan to add this feature, so that the triangle can be rotated before the plot.

We discern between continuous and discrete dynamics. The main reason is that this class’ objective
is to plot evolutionary dynamics on a simplex. When we are working with the replicator equation
it is straightforward to calculate all the gradients on the unit simplex. However, when working
with finite populations using the social learning model (social imitation), we are actually working
with a simplex with size equivalent to the population size (so all the dimensions of the simplex must
sum to Z) and we only consider discrete (integer) values inside the simplex (the population may
only have integer individuals). Of course this can be translated into frequencies, which gets us
back to the unit simplex, but it is not so simple to transform any value between 0-1 sampled with
numpy.linspace to a discrete value.

Therefore, for the discrete case, will will sample directly discrete points in barycentric
coordinates and only then, translate them into cartesian cooordinates.

	Parameters

	
	nb_points (int [https://docs.python.org/3/library/functions.html#int]) – number of points for which to calculate the gradients

	discrete (bool [https://docs.python.org/3/library/functions.html#bool]) – indicates whether we are in the continuous or discrete case

	size (int [https://docs.python.org/3/library/functions.html#int]) – if we are in the discrete case, indicates the size of the simplex

See also

egttools.plotting.plot_gradient, egttools.plotting.draw_invasion_diagram, egttools.analytical.replicator_equation, egttools.analytical.StochDynamics, Cite, -----, This

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from egttools.plotting.helpers import (xy_to_barycentric_coordinates, calculate_stationary_points,
 ... calculate_stability)
>>> from egttools.helpers.vectorized import (vectorized_replicator_equation,
 ... vectorized_barycentric_to_xy_coordinates)
>>> from egttools.analytical import replicator_equation
>>> simplex = Simplex2D()
>>> payoffs = np.array([[1, 0, 0],
 ... [0, 2, 0],
 ... [0, 0, 3]])
>>> v = np.asarray(xy_to_barycentric_coordinates(simplex.X, simplex.Y, simplex.corners))
>>> results = vectorized_replicator_equation(v, payoffs)
>>> xy_results = vectorized_barycentric_to_xy_coordinates(results, simplex.corners)
>>> Ux = xy_results[:, :, 0].astype(np.float64)
>>> Uy = xy_results[:, :, 1].astype(np.float64)
>>> calculate_gradients = lambda u: replicator_equation(u, payoffs)
>>> roots, roots_xy = calculate_stationary_points(simplex.trimesh.x, simplex.trimesh.y,
 ... simplex.corners, calculate_gradients)
>>> stability = calculate_stability(roots, calculate_gradients)
>>> type_labels = ['A', 'B', 'C']
>>> fig, ax = plt.subplots(figsize=(10,8))
>>> plot = (simplex.add_axis(ax=ax)
 apply_simplex_boundaries_to_gradients(Ux, Uy)
 draw_triangle()
 draw_gradients(zorder=0)
 add_colorbar()
 draw_stationary_points(roots_xy, stability)
 add_vertex_labels(type_labels)
 draw_trajectory_from_roots(lambda u, t: replicator_equation(u, payoffs),
 ... roots,
 ... stability,
 ... trajectory_length=15,
 ... linewidth=1,
 ... step=0.01,
 ... color='k', draw_arrow=True, arrowdirection='right',
 ... arrowsize=30, zorder=4, arrowstyle='fancy')
 draw_scatter_shadow(lambda u, t: replicator_equation(u, payoffs), 300, color='gray',
 ... marker='.', s=0.1, zorder=0)

[image: ../_images/simplex_example_infinite_pop_1.png]
>>> plot = (simplex.add_axis(ax=ax)
 apply_simplex_boundaries_to_gradients(Ux, Uy)
 draw_triangle()
 draw_stationary_points(roots_xy, stability)
 add_vertex_labels(type_labels)
 draw_trajectory_from_roots(lambda u, t: replicator_equation(u, payoffs),
 ... roots,
 ... stability,
 ... trajectory_length=15,
 ... linewidth=1,
 ... step=0.01,
 ... color='k', draw_arrow=True, arrowdirection='right',
 ... arrowsize=30, zorder=4, arrowstyle='fancy')
 draw_scatter_shadow(lambda u, t: replicator_equation(u, payoffs), 300, color='gray',
 ... marker='.', s=0.1, zorder=0)

[image: ../_images/simplex_example_infinite_pop_2.png]

	
add_axis(figsize=(10, 8), ax=None)

	Creates or stores a new axis inside the class.

	Parameters

	
	figsize (Optional[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]) – The size of the figure. This argument is only used if no ax is given.

	ax (Optional[matplotlib.pyplot.axis]) – If given, the axis will be stored inside the object. Otherwise, a new axis will be created.

	Returns

	The class object.

	Return type

	Simplex2D

	
add_colorbar(aspect=10, anchor=(-0.5, 0.5), panchor=(0, 0), shrink=0.6, label='gradient of selection', label_rotation=270, label_fontsize=16, labelpad=20)

	Adds a color bar to indicate the meaning of the colors of the plotted gradients.
This should only be used if the gradients were plotted and the colors have been drawn in function
of the strength of the gradient.

	Parameters

	
	aspect (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Aspect ration of the color bar.

	anchor (Optional[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]) – Anchor point for the color bar.

	panchor (Optional[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]) –

	shrink (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Ration for shrinking the color bar.

	label (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Label for the color bar.

	label_rotation (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Rotation of the label.

	label_fontsize (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Font size of the label.

	labelpad (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – How much padding should be added to the label.

	Returns

	A reference to the class object.

	Return type

	Simplex2D

	
add_edges_with_random_drift(random_drift_edges)

	Adds information to the class about which edges have random drift.

This will be used to avoid plotting a lot equilibria alongside an edge.

	Parameters

	random_drift_edges (List[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]) – A list of tuples which indicate the (undirected) edges in which there is random drift.

	Returns

	The class object.

	Return type

	Simplex2D

	
add_vertex_labels(labels, epsilon_bottom=0.05, epsilon_top=0.05, fontsize=16, horizontalalignment='center')

	Adds labels to the vertices of the triangle that represents the 2-simplex.

	Parameters

	
	labels (Union[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A tuple or a list containing 3 strings that give name to the vertices of the triangle. The order is
bottom left corner, top corner, bottom right corner.

	epsilon_bottom (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – How much separation should the label have from the bottom vertices

	epsilon_top (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – How much separation should the label have from the top vertex.

	fontsize (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Font size for the labels.

	horizontalalignment (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Horizontal alignment for the label text.

	Returns

	A reference to the current object.

	Return type

	Simplex2D

	
apply_simplex_boundaries_to_gradients(u, v)

	Applies boundaries of the triangle to a list of gradient values over the cartesian grid.

The boundaries are applied using the X Y grid defined in the instantiation of the class.

	Parameters

	
	u (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The X component of the gradients.

	v (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The Y component of the gradients

	Returns

	A reference to the class object.

	Return type

	Simplex2D

	
draw_gradients(arrowsize=2, arrowstyle='fancy', color=None, density=1, linewidth=1.5, cmap='viridis', zorder=0)

	Draws the gradients inside the unit simplex using a streamplot.

	Parameters

	
	arrowsize (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The size of the arrows of the gradients

	arrowstyle (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The style of the arrows. See matplotlib arrowstyles.

	color (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – The color of the arrows. If no color is given, it will be generated as a function of the gradients.

	density (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The density of arrows (how many arrows) to plot.

	linewidth (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The width of the arrows.

	cmap (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], matplotlib.colors.Colormap]]) – The color map to be used.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which the gradients should appear in the plot (above or below other elements).

	Returns

	A reference to the class object.

	Return type

	Simplex2D

	
draw_scatter_shadow(f, nb_trajectories, trajectory_length=15, step=0.1, s=0.1, color='whitesmoke', marker='.', zorder=0)

	Draws a series of point which follows trajectories in the simplex starting from random points.

The visual effect is as if there were shadows in the direction of the gradient.

	Parameters

	
	f (Callable[[np.ndarray, int [https://docs.python.org/3/library/functions.html#int]], np.ndarray]) – Function that can calculate the gradient at any point in the simplex.

	nb_trajectories (int [https://docs.python.org/3/library/functions.html#int]) – Number of trajectories to draw.

	trajectory_length (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Length of the trajectory. This is used to calculate the amount of points odeint should calculate.

	step (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The step size in time to get to the maximum trajectory length. Together with trajectory_length
this indicates the amount of points odeint should calculate.

	s (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – Size of the points.

	color (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – The color of the points of the trajectory.

	marker (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Style of the points to be drawn. See matplotlib markers.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which this plot should appear in the figure (above or bellow other plots).

	Returns

	A reference to the current object.

	Return type

	Simplex2D

	
draw_stationary_distribution(stationary_distribution, cmap='binary', shading='gouraud', alpha=1.0, edgecolors='grey', vmin=None, vmax=None, zorder=0, colorbar=True, aspect=10, anchor=(-0.5, 0.5), panchor=(0, 0), shrink=0.6, label='stationary distribution', label_rotation=270, label_fontsize=16, labelpad=20)

	Draws the stationary distribution inside the simplex using a matplotlib.pyplot.tripcolor

	Parameters

	
	stationary_distribution (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array containing the values of the stationary distribution. The order of these points
must follow the order given by egttools.sample_simplex when iterating from 0-nb_states.

	cmap (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], matplotlib.colors.Colormap]]) – Color map to be used.

	shading (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Type of shading to be used in the plot. Can be either “gouraud” or “flat”.

	alpha (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The level of transparency.

	edgecolors (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The colors of the edges of the triangular grid.

	vmin (Optional[flaot]) – The minimum value to take into account for the color range to plot.

	vmax (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The maximum value to take into account for the color range to plot.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which this plot should appear in the figure (above or bellow other plots).

	colorbar (Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = True) – Indicates whether to add a color bar to the plot.

	aspect (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The aspect ration of the color bar.

	anchor (Optional[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]) – The anchor of the color bar.

	panchor (Optional[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]) – The panchor of the colorbar

	shrink (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Ratio of shrinking the color bar.

	label (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Label of the color bar.

	label_rotation (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Rotation of the label.

	label_fontsize (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Font size of the label.

	labelpad (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – How much padding should be added to the label.

	Returns

	A reference to the current object

	Return type

	Simplex2D

	
draw_stationary_points(roots, stability, zorder=5, linewidth=3, atol=1e-07)

	Draws the black circles for stable points and white circles for unstable ones.

	Parameters

	
	roots (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]]) – A list of arrays (or tuples) containing the cartesian coordinates of the roots.

	stability (Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][bool [https://docs.python.org/3/library/functions.html#bool]], List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]]) – A list of boolean or integer values indicating whether the root is stable. If there are integer values
-1 - unstable, 0 - saddle, 1 - stable.

	zorder (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Indicates in which order these points should appear in the figure (above or below other plots).

	linewidth (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – Width of the border of the circles that represents the roots.

	atol (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – Tolerance to consider a value equal to 0. Used to check if a point is on an edge.

	Returns

	A reference to the class object.

	Return type

	Simplex2D

	
draw_trajectories(f, nb_trajectories, trajectory_length=15, step=0.01, color='whitesmoke', ms=0.5, zorder=0)

	Draws trajectories inside the unit simplex starting from random initial points.

	Parameters

	
	f (Callable[[np.ndarray, int [https://docs.python.org/3/library/functions.html#int]], np.ndarray]) – Function that can calculate the gradient at any point in the simplex.

	nb_trajectories (int [https://docs.python.org/3/library/functions.html#int]) – Number of trajectories to draw.

	trajectory_length (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Length of the trajectory. This is used to calculate the amount of points odeint should calculate.

	step (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The step size in time to get to the maximum trajectory length. Together with trajectory_length
this indicates the amount of points odeint should calculate.

	color (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – The color of the points of the trajectory.

	ms (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The size of the points.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which this plot should appear in the figure (above or bellow other plots).

	Returns

	A reference to the current object.

	Return type

	Simplex2D

	
draw_trajectory_from_points(f, points, trajectory_length=15, step=0.1, color='k', linewidth=0.5, zorder=0, draw_arrow=False, arrowstyle='fancy', arrowsize=50, position=None, arrowdirection='right')

	Draws trajectories inside the unit simplex starting from the indicated points.

	Parameters

	
	f (Callable[[np.ndarray, int [https://docs.python.org/3/library/functions.html#int]], np.ndarray]) – Function that can calculate the gradient at any point in the simplex.

	points (List[np.ndarray[np.float64[3,m]]) – A list of points in barycentric coordinates from which the trajectories should start.

	trajectory_length (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Length of the trajectory. This is used to calculate the amount of points odeint should calculate.

	step (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The step size in time to get to the maximum trajectory length. Together with trajectory_length
this indicates the amount of points odeint should calculate.

	color (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – The color of the points of the trajectory.

	linewidth (Optional[float [https://docs.python.org/3/library/functions.html#float]] = 0.5) – Width of the line to be plot.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which this plot should appear in the figure (above or bellow other plots).

	draw_arrow (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Indicates whether to draw an arrow along the trajectory.

	arrowstyle (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Indicates the style of the arrow to be plotted.

	arrowsize (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The size of the arrow.

	position (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Where should the arrow be pltoted.

	arrowdirection (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Indicates whether the arrow should be plotted in the direction of the advancing trajectory (right) or
the opposite.

	Returns

	A reference to the current object.

	Return type

	Simplex2D

	
draw_trajectory_from_roots(f, roots, stability, trajectory_length=15, step=0.1, perturbation=0.01, color='k', linewidth=0.5, zorder=0, draw_arrow=False, arrowstyle='fancy', arrowsize=50, position=None, arrowdirection='right', atol=1e-07)

	Draws trajectories inside the unit simplex starting from the stationary points.

	Parameters

	
	f (Callable[[np.ndarray, int [https://docs.python.org/3/library/functions.html#int]], np.ndarray]) – Function that can calculate the gradient at any point in the simplex.

	roots (List[np.ndarray[np.float64[3,m]]) – A list of points in barycentric coordinates from which the trajectories should start.

	stability (List[bool [https://docs.python.org/3/library/functions.html#bool]]) – Indicates whether the root is a stable or unstable point.

	trajectory_length (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Length of the trajectory. This is used to calculate the amount of points odeint should calculate.

	step (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The step size in time to get to the maximum trajectory length. Together with trajectory_length
this indicates the amount of points odeint should calculate.

	perturbation (Optional[Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]]) – Indicates how much perturbation should be applied to the root to start drawing the trajectory.
If no perturbation is applied, since the gradient is 0, the system will never leave the root.

	color (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) – The color of the points of the trajectory.

	linewidth (Optional[float [https://docs.python.org/3/library/functions.html#float]] = 0.5) – Width of the line to be plot.

	zorder (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The order in which this plot should appear in the figure (above or bellow other plots).

	draw_arrow (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Indicates whether to draw an arrow along the trajectory.

	arrowstyle (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Indicates the style of the arrow to be plotted.

	arrowsize (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The size of the arrow.

	position (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Where should the arrow be pltoted.

	arrowdirection (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Indicates whether the arrow should be plotted in the direction of the advancing trajectory (right) or
the opposite.

	atol (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Tolerance to consider a value equal to 0. Used to check if a point is on an edge of the simplex.

	Returns

	A reference to the current object.

	Return type

	Simplex2D

	
draw_trajectory_from_vector(trajectory, color='k', linewidth=0.5, zorder=0)

	

	
draw_triangle(color='k', linewidth=2, linewidth_random_drift=4)

	Draws the borders of a triangle enclosing the 2-simplex.

	Parameters

	
	color (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The color of the borders of the triangle.

	linewidth (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The width of the borders of the triangle.

	linewidth_random_drift (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The width of the dashed line that represents the edges with random drift.

	Returns

	A refernece to the class object.

	Return type

	Simplex2D

	
get_figure_and_axis()

	Returns the stored figure and axis.

	Returns

	The figure and axis stored in the current object.

	Return type

	Tuple[matplotlib.pyplot.figure, matplotlib.pyplot.axis]

	
__annotations__ = {}

	

	
corners = array([[0. , 0.], [0.5 , 0.8660254], [1. , 0.]])

	

	
refiner = <matplotlib.tri.trirefine.UniformTriRefiner object>

	

	
side_slope = 1.7320508075688772

	

	
top_corner = 0.8660254037844386

	

	
triangle = <matplotlib.tri.triangulation.Triangulation object>

	

	
trimesh = <matplotlib.tri.triangulation.Triangulation object>

	

egttools.utils

This python module contains some utility functions
to find saddle points and plot gradients in 2 player, 2 strategy games.

Functions

	calculate_nb_unique_combinations

	Calculates the number of unique combinations given the required number of elements of each group, which should be given in List format in the slots_per_bin parameter.

	calculate_stationary_distribution

	Calculates stationary distribution from a transition matrix of Markov chain.

	calculate_stationary_distribution_non_hermitian

	Calculates stationary distribution from a transition matrix of Markov chain which is not hermitian.

	combine

	Outputs a generator that will generate an ordered list with the possible combinations of values with length.

	eigvals

	Compute eigenvalues from an ordinary or generalized eigenvalue problem.

	find_saddle_type_and_gradient_direction

	Finds whether a saddle point is stable or not.

	get_payoff_function

	Returns a function which gives the payoff of strategy i against strategy j.

	schur

	Compute Schur decomposition of a matrix.

	transform_payoffs_to_pairwise

	This function transform a payoff matrix in full format to a pairwise format.

	warn

	Issue a warning, or maybe ignore it or raise an exception.

Classes

	AbstractGame

	Abstract class which must be implemented by any new game.

	csc_matrix

	Compressed Sparse Column matrix

	csr_matrix

	Compressed Sparse Row matrix

egttools.utils.calculate_nb_unique_combinations

	
calculate_nb_unique_combinations(slots_per_bin)

	Calculates the number of unique combinations given the required number
of elements of each group, which should be given in List format in the
slots_per_bin parameter.

	Parameters

	slots_per_bin (Union[List[int [https://docs.python.org/3/library/functions.html#int]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – The list should contain the required number of elements of each group
that should be combined in a tuple of length sum(slots_per_bin).

	Returns

	The total number of unique combinations of the groups in the available slots.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

egttools.utils.calculate_stationary_distribution

	
calculate_stationary_distribution(transition_matrix)

	Calculates stationary distribution from a transition matrix of Markov chain.

The use of this function is not recommended if the matrix is non-Hermitian. Please use
calculate_stationary_distribution_non_hermitian instead in this case.

The stationary distribution is the normalized eigenvector associated with the eigenvalue 1

	Parameters

	transition_matrix (Union[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], scipy.sparse.csr_matrix, scipy.sparse.csc_matrix]) – A 2 dimensional transition matrix

	Returns

	A 1-dimensional vector containing the stationary distribution

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.utils.calculate_stationary_distribution_non_hermitian

egttools.utils.calculate_stationary_distribution_non_hermitian

	
calculate_stationary_distribution_non_hermitian(transition_matrix)

	Calculates stationary distribution from a transition matrix of Markov chain which is not hermitian.

The stationary distribution is the normalized eigenvector associated with the eigenvalue 1

	Parameters

	transition_matrix (Union[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], scipy.sparse.csr_matrix, scipy.sparse.csc_matrix]) – A 2 dimensional transition matrix

	Returns

	A 1-dimensional vector containing the stationary distribution

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

See also

egttools.utils.calculate_stationary_distribution

egttools.utils.combine

	
combine(values, length)

	Outputs a generator that will generate an ordered list
with the possible combinations of values with length.

Each time the generator is called it will output a list
of length :param length which contains a combinations of the elements in
the list of values.

	Parameters

	
	values (List) – elements to combine

	length (int [https://docs.python.org/3/library/functions.html#int]) – size of the output

	Returns

	A generator which outputs ordered combinations of value as a list of size
length

	Return type

	Generator

Examples

>>> for value in combine([1, 2], 2):
... print(value)
[1, 1]
[2, 1]
[1, 2]
[2, 2]

egttools.utils.eigvals

	
eigvals(a, b=None, overwrite_a=False, check_finite=True, homogeneous_eigvals=False)

	Compute eigenvalues from an ordinary or generalized eigenvalue problem.

Find eigenvalues of a general matrix:

a vr[:,i] = w[i] b vr[:,i]

	Parameters

	
	a ((M, M) array_like) – A complex or real matrix whose eigenvalues and eigenvectors
will be computed.

	b ((M, M) array_like, optional) – Right-hand side matrix in a generalized eigenvalue problem.
If omitted, identity matrix is assumed.

	overwrite_a (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite data in a (may improve performance)

	check_finite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities
or NaNs.

	homogeneous_eigvals (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, return the eigenvalues in homogeneous coordinates.
In this case w is a (2, M) array so that:

w[1,i] a vr[:,i] = w[0,i] b vr[:,i]

Default is False.

	Returns

	w – The eigenvalues, each repeated according to its multiplicity
but not in any specific order. The shape is (M,) unless
homogeneous_eigvals=True.

	Return type

	(M,) or (2, M) double or complex ndarray

	Raises

	LinAlgError – If eigenvalue computation does not converge

See also

	eig
	eigenvalues and right eigenvectors of general arrays.

	eigvalsh
	eigenvalues of symmetric or Hermitian arrays

	eigvals_banded
	eigenvalues for symmetric/Hermitian band matrices

	eigvalsh_tridiagonal
	eigenvalues of symmetric/Hermitian tridiagonal matrices

Examples

>>> from scipy import linalg
>>> a = np.array([[0., -1.], [1., 0.]])
>>> linalg.eigvals(a)
array([0.+1.j, 0.-1.j])

>>> b = np.array([[0., 1.], [1., 1.]])
>>> linalg.eigvals(a, b)
array([1.+0.j, -1.+0.j])

>>> a = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]])
>>> linalg.eigvals(a, homogeneous_eigvals=True)
array([[3.+0.j, 8.+0.j, 7.+0.j],
 [1.+0.j, 1.+0.j, 1.+0.j]])

egttools.utils.find_saddle_type_and_gradient_direction

	
find_saddle_type_and_gradient_direction(gradient, saddle_points_idx, offset=0.01)

	Finds whether a saddle point is stable or not. And defines the direction of the
gradient among stable and unstable points.

	Parameters

	
	gradient (Union[List[float [https://docs.python.org/3/library/functions.html#float]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[1,m]]]) – array containing the gradient of selection for all states of the population

	saddle_points_idx (Union[List[int [https://docs.python.org/3/library/functions.html#int]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.int64[1,m]]]) – array containing the saddle points indices

	offset (float [https://docs.python.org/3/library/functions.html#float]) – offset for the gradient_directions, so that arrows don’t overlap with point

	Returns

	Tuple containing an array that indicates the type of saddle points and another array indicating
the direction of the gradient between unstable and stable points

	Return type

	Tuple[List[bool [https://docs.python.org/3/library/functions.html#bool]], List[float [https://docs.python.org/3/library/functions.html#float]]]

egttools.utils.get_payoff_function

	
get_payoff_function(strategy_i, strategy_j, nb_strategies, game)

	Returns a function which gives the payoff of strategy i against strategy j.

The returned function will return the payoff of strategy i
given k individuals of strategy i and group_size - k j strategists.

	Parameters

	
	strategy_i (int [https://docs.python.org/3/library/functions.html#int]) – index of strategy i

	strategy_j (int [https://docs.python.org/3/library/functions.html#int]) – index of strategy j

	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Total number of strategies in the population.

	game (egttools.games.AbstractGame) – A game object which contains the method egttools.games.AbstractGame.payoff which returns the payoff of
a strategy given a group composition.

	Returns

	A function which will return the payoff of strategy i,
given k individuals of strategy i and group_size - k j strategists.

	Return type

	Callable[[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], Optional[List]], float [https://docs.python.org/3/library/functions.html#float]]

egttools.utils.schur

	
schur(a, output='real', lwork=None, overwrite_a=False, sort=None, check_finite=True)

	Compute Schur decomposition of a matrix.

The Schur decomposition is:

A = Z T Z^H

where Z is unitary and T is either upper-triangular, or for real
Schur decomposition (output=’real’), quasi-upper triangular. In
the quasi-triangular form, 2x2 blocks describing complex-valued
eigenvalue pairs may extrude from the diagonal.

	Parameters

	
	a ((M, M) array_like) – Matrix to decompose

	output ({'real', 'complex'}, optional) – Construct the real or complex Schur decomposition (for real matrices).

	lwork (int [https://docs.python.org/3/library/functions.html#int], optional) – Work array size. If None or -1, it is automatically computed.

	overwrite_a (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite data in a (may improve performance).

	sort ({None, callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional) – Specifies whether the upper eigenvalues should be sorted. A callable
may be passed that, given a eigenvalue, returns a boolean denoting
whether the eigenvalue should be sorted to the top-left (True).
Alternatively, string parameters may be used:

'lhp' Left-hand plane (x.real < 0.0)
'rhp' Right-hand plane (x.real > 0.0)
'iuc' Inside the unit circle (x*x.conjugate() <= 1.0)
'ouc' Outside the unit circle (x*x.conjugate() > 1.0)

Defaults to None (no sorting).

	check_finite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.

	Returns

	
	T ((M, M) ndarray) – Schur form of A. It is real-valued for the real Schur decomposition.

	Z ((M, M) ndarray) – An unitary Schur transformation matrix for A.
It is real-valued for the real Schur decomposition.

	sdim (int) – If and only if sorting was requested, a third return value will
contain the number of eigenvalues satisfying the sort condition.

	Raises

	LinAlgError – Error raised under three conditions:

 1. The algorithm failed due to a failure of the QR algorithm to
 compute all eigenvalues.
 2. If eigenvalue sorting was requested, the eigenvalues could not be
 reordered due to a failure to separate eigenvalues, usually because
 of poor conditioning.
 3. If eigenvalue sorting was requested, roundoff errors caused the
 leading eigenvalues to no longer satisfy the sorting condition.

See also

	rsf2csf
	Convert real Schur form to complex Schur form

Examples

>>> from scipy.linalg import schur, eigvals
>>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]])
>>> T, Z = schur(A)
>>> T
array([[2.65896708, 1.42440458, -1.92933439],
 [0. , -0.32948354, -0.49063704],
 [0. , 1.31178921, -0.32948354]])
>>> Z
array([[0.72711591, -0.60156188, 0.33079564],
 [0.52839428, 0.79801892, 0.28976765],
 [0.43829436, 0.03590414, -0.89811411]])

>>> T2, Z2 = schur(A, output='complex')
>>> T2
array([[2.65896708, -1.22839825+1.32378589j, 0.42590089+1.51937378j],
 [0. , -0.32948354+0.80225456j, -0.59877807+0.56192146j],
 [0. , 0. , -0.32948354-0.80225456j]])
>>> eigvals(T2)
array([2.65896708, -0.32948354+0.80225456j, -0.32948354-0.80225456j])

An arbitrary custom eig-sorting condition, having positive imaginary part,
which is satisfied by only one eigenvalue

>>> T3, Z3, sdim = schur(A, output='complex', sort=lambda x: x.imag > 0)
>>> sdim
1

egttools.utils.transform_payoffs_to_pairwise

	
transform_payoffs_to_pairwise(nb_strategies, game)

	This function transform a payoff matrix in full format to a pairwise format.

The transformation should only be done if it is possible to assume that there will always be
at most 2 strategies in a group at a given time. An example of this would be when calculating
the Small Mutation Limit (SML) of the Pairwise Moran Process. In this case, we do not need to
know the payoffs for each strategy for any group composition (i.e., when there are more than
2 strategies in the group), but only for all possible combinations of each 2 strategies.

To be able to represent this in a nb_strategies x nb_strategies square matrix, we make each
entry of the matrix a function, which will return the payoff of the strategy given k players
adopting strategy i and N - k players adopting strategy j.

	Parameters

	
	nb_strategies (int [https://docs.python.org/3/library/functions.html#int]) – Number of strategies in the population

	game (egttools.games.AbstractGame) – A game object which implements the method egttools.games.AbstractGame.payoff which returns the payoff of
a strategy given a group composition.

	Returns

	Returns the payoff matrix in shape nb_strategies x nb_strategies, and each entry of the payoff
matrix is a function which will return the payoff of a strategy i against strategy j given
a group composition with k members of strategy i and N - k members of strategy j.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m,m]]

egttools.utils.warn

	
warn(message, category=None, stacklevel=1, source=None)

	Issue a warning, or maybe ignore it or raise an exception.

egttools.utils.AbstractGame

	
class AbstractGame(self: egttools.numerical.numerical.games.AbstractGame)

	Bases: pybind11_object

Abstract class which must be implemented by any new game.

This class provides a common interface for Games, so that they can be passed to the methods
(both analytical and numerical) implemented in egttools.

You must implement the following methods:
- play(group_composition: List[int], game_payoffs: List[float]) -> None
- calculate_payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- calculate_fitness(strategy_index: int, pop_size: int, strategies: numpy.ndarray[numpy.uint64[m, 1]]) -> float
- __str__
- type() -> str
- payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- payoff(strategy: int, group_composition: List[int]) -> float
- nb_strategies() -> int
- save_payoffs(file_name: str) -> None

See also

egttools.games.AbstractNPlayerGame

Methods

	calculate_fitness

	Estimates the fitness for a player_type in the population with state :param strategies.

	calculate_payoffs

	Estimates the payoffs for each strategy and returns the values in a matrix.

	nb_strategies

	Number of different strategies playing the game.

	payoff

	Returns the payoff of a strategy given a group composition.

	payoffs

	Returns the payoff matrix of the game.

	play

	Updates the vector of payoffs with the payoffs of each player after playing the game.

	save_payoffs

	Stores the payoff matrix in a txt file.

	type

	returns the type of game.

	
__init__(self: egttools.numerical.numerical.games.AbstractGame) → None [https://docs.python.org/3/library/constants.html#None]

	Abstract class which must be implemented by any new game.

This class provides a common interface for Games, so that they can be passed to the methods
(both analytical and numerical) implemented in egttools.

You must implement the following methods:
- play(group_composition: List[int], game_payoffs: List[float]) -> None
- calculate_payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- calculate_fitness(strategy_index: int, pop_size: int, strategies: numpy.ndarray[numpy.uint64[m, 1]]) -> float
- __str__
- type() -> str
- payoffs() -> numpy.ndarray[numpy.float64[m, n]]
- payoff(strategy: int, group_composition: List[int]) -> float
- nb_strategies() -> int
- save_payoffs(file_name: str) -> None

See also

egttools.games.AbstractNPlayerGame

	
__new__(**kwargs)

	

	
__str__(self: egttools.numerical.numerical.games.AbstractGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
calculate_fitness(self: egttools.numerical.numerical.games.AbstractGame, strategy_index: int [https://docs.python.org/3/library/functions.html#int], pop_size: int [https://docs.python.org/3/library/functions.html#int], strategies: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) → float [https://docs.python.org/3/library/functions.html#float]

	Estimates the fitness for a player_type in the population with state :param strategies.

This function assumes that the player with strategy player_type is not included in
the vector of strategy counts strategies.

	Parameters

	
	strategy_index (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	pop_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the population.

	strategies (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.uint64[m, 1]]) – A vector of counts of each strategy. The current state of the population.

	Returns

	The fitness of the strategy in the population state given by strategies.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculate_payoffs(self: egttools.numerical.numerical.games.AbstractGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Estimates the payoffs for each strategy and returns the values in a matrix.

Each row of the matrix represents a strategy and each column a game state.
E.g., in case of a 2 player game, each entry a_ij gives the payoff for strategy
i against strategy j. In case of a group game, each entry a_ij gives the payoff
of strategy i for game state j, which represents the group composition.

	Returns

	A matrix with the expected payoffs for each strategy given each possible game
state.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	
nb_strategies(self: egttools.numerical.numerical.games.AbstractGame) → int [https://docs.python.org/3/library/functions.html#int]

	Number of different strategies playing the game.

	
payoff(self: egttools.numerical.numerical.games.AbstractGame, strategy: int [https://docs.python.org/3/library/functions.html#int], group_composition: List[int [https://docs.python.org/3/library/functions.html#int]]) → float [https://docs.python.org/3/library/functions.html#float]

	Returns the payoff of a strategy given a group composition.

If the group composition does not include the strategy, the payoff should be zero.

	Parameters

	
	strategy (int [https://docs.python.org/3/library/functions.html#int]) – The index of the strategy used by the player.

	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – List with the group composition. The structure of this list
depends on the particular implementation of this abstract method.

	Returns

	The payoff value.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
payoffs(self: egttools.numerical.numerical.games.AbstractGame) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][numpy.float64[m, n]]

	Returns the payoff matrix of the game.

	Returns

	The payoff matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
play(self: egttools.numerical.numerical.games.AbstractGame, group_composition: List[int [https://docs.python.org/3/library/functions.html#int]], game_payoffs: List[float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Updates the vector of payoffs with the payoffs of each player after playing the game.

This method will run the game using the players and player types defined in :param group_composition,
and will update the vector :param game_payoffs with the resulting payoff of each player.

	Parameters

	
	group_composition (List[int [https://docs.python.org/3/library/functions.html#int]]) – A list with counts of the number of players of each strategy in the group.

	game_payoffs (List[float [https://docs.python.org/3/library/functions.html#float]]) – A list used as container for the payoffs of each player

	
save_payoffs(self: egttools.numerical.numerical.games.AbstractGame, file_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores the payoff matrix in a txt file.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file in which the data will be stored.

	
type(self: egttools.numerical.numerical.games.AbstractGame) → str [https://docs.python.org/3/library/stdtypes.html#str]

	returns the type of game.

egttools.utils.csc_matrix

	
class csc_matrix(arg1, shape=None, dtype=None, copy=False)

	Bases: _cs_matrix

Compressed Sparse Column matrix

This can be instantiated in several ways:

	csc_matrix(D)
	with a dense matrix or rank-2 ndarray D

	csc_matrix(S)
	with another sparse matrix S (equivalent to S.tocsc())

	csc_matrix((M, N), [dtype])
	to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype=’d’.

	csc_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
	where data, row_ind and col_ind satisfy the
relationship a[row_ind[k], col_ind[k]] = data[k].

	csc_matrix((data, indices, indptr), [shape=(M, N)])
	is the standard CSC representation where the row indices for
column i are stored in indices[indptr[i]:indptr[i+1]]
and their corresponding values are stored in
data[indptr[i]:indptr[i+1]]. If the shape parameter is
not supplied, the matrix dimensions are inferred from
the index arrays.

	
dtype

	Data type of the matrix

	Type

	dtype

	
shape

	Shape of the matrix

	Type

	2-tuple

	
ndim

	Number of dimensions (this is always 2)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
nnz

	Number of stored values, including explicit zeros

	
data

	Data array of the matrix

	
indices

	CSC format index array

	
indptr

	CSC format index pointer array

	
has_sorted_indices

	Whether indices are sorted

Notes

Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.

	Advantages of the CSC format
	
	efficient arithmetic operations CSC + CSC, CSC * CSC, etc.

	efficient column slicing

	fast matrix vector products (CSR, BSR may be faster)

	Disadvantages of the CSC format
	
	slow row slicing operations (consider CSR)

	changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

>>> import numpy as np
>>> from scipy.sparse import csc_matrix
>>> csc_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 2, 2, 0, 1, 2])
>>> col = np.array([0, 0, 1, 2, 2, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 4],
 [0, 0, 5],
 [2, 3, 6]])

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 4],
 [0, 0, 5],
 [2, 3, 6]])

Methods

	arcsin

	Element-wise arcsin.

	arcsinh

	Element-wise arcsinh.

	arctan

	Element-wise arctan.

	arctanh

	Element-wise arctanh.

	argmax

	Return indices of maximum elements along an axis.

	argmin

	Return indices of minimum elements along an axis.

	asformat

	Return this matrix in the passed format.

	asfptype

	Upcast matrix to a floating point format (if necessary)

	astype

	Cast the matrix elements to a specified type.

	ceil

	Element-wise ceil.

	check_format

	check whether the matrix format is valid

	conj

	Element-wise complex conjugation.

	conjugate

	Element-wise complex conjugation.

	copy

	Returns a copy of this matrix.

	count_nonzero

	Number of non-zero entries, equivalent to

	deg2rad

	Element-wise deg2rad.

	diagonal

	Returns the kth diagonal of the matrix.

	dot

	Ordinary dot product

	eliminate_zeros

	Remove zero entries from the matrix

	expm1

	Element-wise expm1.

	floor

	Element-wise floor.

	getH

	Return the Hermitian transpose of this matrix.

	get_shape

	Get shape of a matrix.

	getcol

	Returns a copy of column i of the matrix, as a (m x 1) CSC matrix (column vector).

	getformat

	Format of a matrix representation as a string.

	getmaxprint

	Maximum number of elements to display when printed.

	getnnz

	Number of stored values, including explicit zeros.

	getrow

	Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).

	log1p

	Element-wise log1p.

	max

	Return the maximum of the matrix or maximum along an axis.

	maximum

	Element-wise maximum between this and another matrix.

	mean

	Compute the arithmetic mean along the specified axis.

	min

	Return the minimum of the matrix or maximum along an axis.

	minimum

	Element-wise minimum between this and another matrix.

	multiply

	Point-wise multiplication by another matrix, vector, or scalar.

	nonzero

	nonzero indices

	power

	This function performs element-wise power.

	prune

	Remove empty space after all non-zero elements.

	rad2deg

	Element-wise rad2deg.

	reshape

	Gives a new shape to a sparse matrix without changing its data.

	resize

	Resize the matrix in-place to dimensions given by shape

	rint

	Element-wise rint.

	set_shape

	See reshape.

	setdiag

	Set diagonal or off-diagonal elements of the array.

	sign

	Element-wise sign.

	sin

	Element-wise sin.

	sinh

	Element-wise sinh.

	sort_indices

	Sort the indices of this matrix in place

	sorted_indices

	Return a copy of this matrix with sorted indices

	sqrt

	Element-wise sqrt.

	sum

	Sum the matrix elements over a given axis.

	sum_duplicates

	Eliminate duplicate matrix entries by adding them together

	tan

	Element-wise tan.

	tanh

	Element-wise tanh.

	toarray

	Return a dense ndarray representation of this matrix.

	tobsr

	Convert this matrix to Block Sparse Row format.

	tocoo

	Convert this matrix to COOrdinate format.

	tocsc

	Convert this matrix to Compressed Sparse Column format.

	tocsr

	Convert this matrix to Compressed Sparse Row format.

	todense

	Return a dense matrix representation of this matrix.

	todia

	Convert this matrix to sparse DIAgonal format.

	todok

	Convert this matrix to Dictionary Of Keys format.

	tolil

	Convert this matrix to List of Lists format.

	trace

	Returns the sum along diagonals of the sparse matrix.

	transpose

	Reverses the dimensions of the sparse matrix.

	trunc

	Element-wise trunc.

Attributes

	dtype

	

	format

	

	has_canonical_format

	Determine whether the matrix has sorted indices and no duplicates

	has_sorted_indices

	Determine whether the matrix has sorted indices

	ndim

	

	nnz

	Number of stored values, including explicit zeros.

	shape

	Get shape of a matrix.

	
__abs__()

	

	
__add__(other)

	

	
__bool__()

	

	
__div__(other)

	

	
__eq__(other)

	Return self==value.

	
__ge__(other)

	Return self>=value.

	
__getattr__(attr)

	

	
__getitem__(key)

	

	
__gt__(other)

	Return self>value.

	
__iadd__(other)

	

	
__idiv__(other)

	

	
__imul__(other)

	

	
__init__(arg1, shape=None, dtype=None, copy=False)

	

	
__isub__(other)

	

	
__iter__()

	

	
__itruediv__(other)

	

	
__le__(other)

	Return self<=value.

	
__len__()

	

	
__lt__(other)

	Return self<value.

	
__matmul__(other)

	

	
__mul__(other)

	

	
__ne__(other)

	Return self!=value.

	
__neg__()

	

	
__nonzero__()

	

	
__pow__(other)

	

	
__radd__(other)

	

	
__rdiv__(other)

	

	
__repr__()

	Return repr(self).

	
__rmatmul__(other)

	

	
__rmul__(other)

	

	
__round__(ndigits=0)

	

	
__rsub__(other)

	

	
__rtruediv__(other)

	

	
__setitem__(key, x)

	

	
__str__()

	Return str(self).

	
__sub__(other)

	

	
__truediv__(other)

	

	
arcsin()

	Element-wise arcsin.

See numpy.arcsin [https://numpy.org/doc/stable/reference/generated/numpy.arcsin.html#numpy.arcsin] for more information.

	
arcsinh()

	Element-wise arcsinh.

See numpy.arcsinh [https://numpy.org/doc/stable/reference/generated/numpy.arcsinh.html#numpy.arcsinh] for more information.

	
arctan()

	Element-wise arctan.

See numpy.arctan [https://numpy.org/doc/stable/reference/generated/numpy.arctan.html#numpy.arctan] for more information.

	
arctanh()

	Element-wise arctanh.

See numpy.arctanh [https://numpy.org/doc/stable/reference/generated/numpy.arctanh.html#numpy.arctanh] for more information.

	
argmax(axis=None, out=None)

	Return indices of maximum elements along an axis.

Implicit zero elements are also taken into account. If there are
several maximum values, the index of the first occurrence is returned.

	Parameters

	
	axis ({-2, -1, 0, 1, None}, optional) – Axis along which the argmax is computed. If None (default), index
of the maximum element in the flatten data is returned.

	out (None, optional) – This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.

	Returns

	ind – Indices of maximum elements. If matrix, its size along axis is 1.

	Return type

	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or int [https://docs.python.org/3/library/functions.html#int]

	
argmin(axis=None, out=None)

	Return indices of minimum elements along an axis.

Implicit zero elements are also taken into account. If there are
several minimum values, the index of the first occurrence is returned.

	Parameters

	
	axis ({-2, -1, 0, 1, None}, optional) – Axis along which the argmin is computed. If None (default), index
of the minimum element in the flatten data is returned.

	out (None, optional) – This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.

	Returns

	ind – Indices of minimum elements. If matrix, its size along axis is 1.

	Return type

	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or int [https://docs.python.org/3/library/functions.html#int]

	
asformat(format, copy=False)

	Return this matrix in the passed format.

	Parameters

	
	format ({str, None}) – The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …)
or None for no conversion.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the result is guaranteed to not share data with self.

	Returns

	A

	Return type

	This matrix in the passed format.

	
asfptype()

	Upcast matrix to a floating point format (if necessary)

	
astype(dtype, casting='unsafe', copy=True)

	Cast the matrix elements to a specified type.

	Parameters

	
	dtype (string or numpy dtype) – Typecode or data-type to which to cast the data.

	casting ({'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional) – Controls what kind of data casting may occur.
Defaults to ‘unsafe’ for backwards compatibility.
‘no’ means the data types should not be cast at all.
‘equiv’ means only byte-order changes are allowed.
‘safe’ means only casts which can preserve values are allowed.
‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.
‘unsafe’ means any data conversions may be done.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If copy is False [https://docs.python.org/3/library/constants.html#False], the result might share some memory with this
matrix. If copy is True [https://docs.python.org/3/library/constants.html#True], it is guaranteed that the result and
this matrix do not share any memory.

	
ceil()

	Element-wise ceil.

See numpy.ceil [https://numpy.org/doc/stable/reference/generated/numpy.ceil.html#numpy.ceil] for more information.

	
check_format(full_check=True)

	check whether the matrix format is valid

	Parameters

	full_check (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True [https://docs.python.org/3/library/constants.html#True], rigorous check, O(N) operations. Otherwise
basic check, O(1) operations (default True).

	
conj(copy=True)

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the result is guaranteed to not share data with self.

	Returns

	A

	Return type

	The element-wise complex conjugate.

	
conjugate(copy=True)

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the result is guaranteed to not share data with self.

	Returns

	A

	Return type

	The element-wise complex conjugate.

	
copy()

	Returns a copy of this matrix.

No data/indices will be shared between the returned value and current
matrix.

	
count_nonzero()

	Number of non-zero entries, equivalent to

np.count_nonzero(a.toarray())

Unlike getnnz() and the nnz property, which return the number of stored
entries (the length of the data attribute), this method counts the
actual number of non-zero entries in data.

	
deg2rad()

	Element-wise deg2rad.

See numpy.deg2rad [https://numpy.org/doc/stable/reference/generated/numpy.deg2rad.html#numpy.deg2rad] for more information.

	
diagonal(k=0)

	Returns the kth diagonal of the matrix.

	Parameters

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which diagonal to get, corresponding to elements a[i, i+k].
Default: 0 (the main diagonal).

New in version 1.0.

See also

	numpy.diagonal [https://numpy.org/doc/stable/reference/generated/numpy.diagonal.html#numpy.diagonal]
	Equivalent numpy function.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])

	
dot(other)

	Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([1, -3, -1], dtype=int64)

	
eliminate_zeros()

	Remove zero entries from the matrix

This is an in place operation.

	
expm1()

	Element-wise expm1.

See numpy.expm1 [https://numpy.org/doc/stable/reference/generated/numpy.expm1.html#numpy.expm1] for more information.

	
floor()

	Element-wise floor.

See numpy.floor [https://numpy.org/doc/stable/reference/generated/numpy.floor.html#numpy.floor] for more information.

	
getH()

	Return the Hermitian transpose of this matrix.

See also

	numpy.matrix.getH [https://numpy.org/doc/stable/reference/generated/numpy.matrix.getH.html#numpy.matrix.getH]
	NumPy’s implementation of getH for matrices

	
get_shape()

	Get shape of a matrix.

	
getcol(i)

	Returns a copy of column i of the matrix, as a (m x 1)
CSC matrix (column vector).

	
getformat()

	Format of a matrix representation as a string.

	
getmaxprint()

	Maximum number of elements to display when printed.

	
getnnz(axis=None)

	Number of stored values, including explicit zeros.

	Parameters

	axis (None, 0, or 1) – Select between the number of values across the whole matrix, in
each column, or in each row.

See also

	count_nonzero
	Number of non-zero entries

	
getrow(i)

	Returns a copy of row i of the matrix, as a (1 x n)
CSR matrix (row vector).

	
log1p()

	Element-wise log1p.

See numpy.log1p [https://numpy.org/doc/stable/reference/generated/numpy.log1p.html#numpy.log1p] for more information.

	
max(axis=None, out=None)

	Return the maximum of the matrix or maximum along an axis.
This takes all elements into account, not just the non-zero ones.

	Parameters

	
	axis ({-2, -1, 0, 1, None} optional) – Axis along which the sum is computed. The default is to
compute the maximum over all the matrix elements, returning
a scalar (i.e., axis = None [https://docs.python.org/3/library/constants.html#None]).

	out (None, optional) – This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except
for the default value, as this argument is not used.

	Returns

	amax – Maximum of a. If axis is None, the result is a scalar value.
If axis is given, the result is a sparse.coo_matrix of dimension
a.ndim - 1.

	Return type

	coo_matrix or scalar

See also

	min
	The minimum value of a sparse matrix along a given axis.

	numpy.matrix.max [https://numpy.org/doc/stable/reference/generated/numpy.matrix.max.html#numpy.matrix.max]
	NumPy’s implementation of ‘max’ for matrices

	
maximum(other)

	Element-wise maximum between this and another matrix.

	
mean(axis=None, dtype=None, out=None)

	Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken
over all elements in the matrix by default, otherwise over the
specified axis. float64 intermediate and return values are used
for integer inputs.

	Parameters

	
	axis ({-2, -1, 0, 1, None} optional) – Axis along which the mean is computed. The default is to compute
the mean of all elements in the matrix (i.e., axis = None [https://docs.python.org/3/library/constants.html#None]).

	dtype (data-type, optional) – Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the
input dtype.

New in version 0.18.0.

	out (np.matrix, optional) – Alternative output matrix in which to place the result. It must
have the same shape as the expected output, but the type of the
output values will be cast if necessary.

New in version 0.18.0.

	Returns

	m

	Return type

	np.matrix

See also

	numpy.matrix.mean [https://numpy.org/doc/stable/reference/generated/numpy.matrix.mean.html#numpy.matrix.mean]
	NumPy’s implementation of ‘mean’ for matrices

	
min(axis=None, out=None)

	Return the minimum of the matrix or maximum along an axis.
This takes all elements into account, not just the non-zero ones.

	Parameters

	
	axis ({-2, -1, 0, 1, None} optional) – Axis along which the sum is computed. The default is to
compute the minimum over all the matrix elements, returning
a scalar (i.e., axis = None [https://docs.python.org/3/library/constants.html#None]).

	out (None, optional) – This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.

	Returns

	amin – Minimum of a. If axis is None, the result is a scalar value.
If axis is given, the result is a sparse.coo_matrix of dimension
a.ndim - 1.

	Return type

	coo_matrix or scalar

See also

	max
	The maximum value of a sparse matrix along a given axis.

	numpy.matrix.min [https://numpy.org/doc/stable/reference/generated/numpy.matrix.min.html#numpy.matrix.min]
	NumPy’s implementation of ‘min’ for matrices

	
minimum(other)

	Element-wise minimum between this and another matrix.

	
multiply(other)

	Point-wise multiplication by another matrix, vector, or
scalar.

	
nonzero()

	nonzero indices

Returns a tuple of arrays (row,col) containing the indices
of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

	
power(n, dtype=None)

	This function performs element-wise power.

	Parameters

	
	n (n is a scalar) –

	dtype (If dtype is not specified, the current dtype will be preserved.) –

	
prune()

	Remove empty space after all non-zero elements.

	
rad2deg()

	Element-wise rad2deg.

See numpy.rad2deg [https://numpy.org/doc/stable/reference/generated/numpy.rad2deg.html#numpy.rad2deg] for more information.

	
reshape(self, shape, order='C', copy=False)

	Gives a new shape to a sparse matrix without changing its data.

	Parameters

	
	shape (length-2 tuple of ints) – The new shape should be compatible with the original shape.

	order ({'C', 'F'}, optional) – Read the elements using this index order. ‘C’ means to read and
write the elements using C-like index order; e.g., read entire first
row, then second row, etc. ‘F’ means to read and write the elements
using Fortran-like index order; e.g., read entire first column, then
second column, etc.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Indicates whether or not attributes of self should be copied
whenever possible. The degree to which attributes are copied varies
depending on the type of sparse matrix being used.

	Returns

	reshaped_matrix – A sparse matrix with the given shape, not necessarily of the same
format as the current object.

	Return type

	sparse matrix

See also

	numpy.matrix.reshape [https://numpy.org/doc/stable/reference/generated/numpy.matrix.reshape.html#numpy.matrix.reshape]
	NumPy’s implementation of ‘reshape’ for matrices

	
resize(*shape)

	Resize the matrix in-place to dimensions given by shape

Any elements that lie within the new shape will remain at the same
indices, while non-zero elements lying outside the new shape are
removed.

	Parameters

	shape ((int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])) – number of rows and columns in the new matrix

Notes

The semantics are not identical to numpy.ndarray.resize [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.resize.html#numpy.ndarray.resize] or
numpy.resize [https://numpy.org/doc/stable/reference/generated/numpy.resize.html#numpy.resize]. Here, the same data will be maintained at each index
before and after reshape, if that index is within the new bounds. In
numpy, resizing maintains contiguity of the array, moving elements
around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes
(arrays, etc.) will be modified in place or replaced with new objects.

	
rint()

	Element-wise rint.

See numpy.rint [https://numpy.org/doc/stable/reference/generated/numpy.rint.html#numpy.rint] for more information.

	
set_shape(shape)

	See reshape.

	
setdiag(values, k=0)

	Set diagonal or off-diagonal elements of the array.

	Parameters

	
	values (array_like) – New values of the diagonal elements.

Values may have any length. If the diagonal is longer than values,
then the remaining diagonal entries will not be set. If values are
longer than the diagonal, then the remaining values are ignored.

If a scalar value is given, all of the diagonal is set to it.

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which off-diagonal to set, corresponding to elements a[i,i+k].
Default: 0 (the main diagonal).

	
sign()

	Element-wise sign.

See numpy.sign [https://numpy.org/doc/stable/reference/generated/numpy.sign.html#numpy.sign] for more information.

	
sin()

	Element-wise sin.

See numpy.sin [https://numpy.org/doc/stable/reference/generated/numpy.sin.html#numpy.sin] for more information.

	
sinh()

	Element-wise sinh.

See numpy.sinh [https://numpy.org/doc/stable/reference/generated/numpy.sinh.html#numpy.sinh] for more information.

	
sort_indices()

	Sort the indices of this matrix in place

	
sorted_indices()

	Return a copy of this matrix with sorted indices

	
sqrt()

	Element-wise sqrt.

See numpy.sqrt [https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html#numpy.sqrt] for more information.

	
sum(axis=None, dtype=None, out=None)

	Sum the matrix elements over a given axis.

	Parameters

	
	axis ({-2, -1, 0, 1, None} optional) – Axis along which the sum is computed. The default is to
compute the sum of all the matrix elements, returning a scalar
(i.e., axis = None [https://docs.python.org/3/library/constants.html#None]).

	dtype (dtype, optional) – The type of the returned matrix and of the accumulator in which
the elements are summed. The dtype of a is used by default
unless a has an integer dtype of less precision than the default
platform integer. In that case, if a is signed then the platform
integer is used while if a is unsigned then an unsigned integer
of the same precision as the platform integer is used.

New in version 0.18.0.

	out (np.matrix, optional) – Alternative output matrix in which to place the result. It must
have the same shape as the expected output, but the type of the
output values will be cast if necessary.

New in version 0.18.0.

	Returns

	sum_along_axis – A matrix with the same shape as self, with the specified
axis removed.

	Return type

	np.matrix

See also

	numpy.matrix.sum [https://numpy.org/doc/stable/reference/generated/numpy.matrix.sum.html#numpy.matrix.sum]
	NumPy’s implementation of ‘sum’ for matrices

	
sum_duplicates()

	Eliminate duplicate matrix entries by adding them together

This is an in place operation.

	
tan()

	Element-wise tan.

See numpy.tan [https://numpy.org/doc/stable/reference/generated/numpy.tan.html#numpy.tan] for more information.

	
tanh()

	Element-wise tanh.

See numpy.tanh [https://numpy.org/doc/stable/reference/generated/numpy.tanh.html#numpy.tanh] for more information.

	
toarray(order=None, out=None)

	Return a dense ndarray representation of this matrix.

	Parameters

	
	order ({'C', 'F'}, optional) – Whether to store multidimensional data in C (row-major)
or Fortran (column-major) order in memory. The default
is ‘None’, which provides no ordering guarantees.
Cannot be specified in conjunction with the out
argument.

	out (ndarray, 2-D, optional) – If specified, uses this array as the output buffer
instead of allocating a new array to return. The provided
array must have the same shape and dtype as the sparse
matrix on which you are calling the method. For most
sparse types, out is required to be memory contiguous
(either C or Fortran ordered).

	Returns

	arr – An array with the same shape and containing the same
data represented by the sparse matrix, with the requested
memory order. If out was passed, the same object is
returned after being modified in-place to contain the
appropriate values.

	Return type

	ndarray, 2-D

	
tobsr(blocksize=None, copy=False)

	Convert this matrix to Block Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and
the resultant bsr_matrix.

When blocksize=(R, C) is provided, it will be used for construction of
the bsr_matrix.

	
tocoo(copy=True)

	Convert this matrix to COOrdinate format.

With copy=False, the data/indices may be shared between this matrix and
the resultant coo_matrix.

	
tocsc(copy=False)

	Convert this matrix to Compressed Sparse Column format.

With copy=False, the data/indices may be shared between this matrix and
the resultant csc_matrix.

	
tocsr(copy=False)

	Convert this matrix to Compressed Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and
the resultant csr_matrix.

	
todense(order=None, out=None)

	Return a dense matrix representation of this matrix.

	Parameters

	
	order ({'C', 'F'}, optional) – Whether to store multi-dimensional data in C (row-major)
or Fortran (column-major) order in memory. The default
is ‘None’, which provides no ordering guarantees.
Cannot be specified in conjunction with the out
argument.

	out (ndarray, 2-D, optional) – If specified, uses this array (or numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix]) as the
output buffer instead of allocating a new array to
return. The provided array must have the same shape and
dtype as the sparse matrix on which you are calling the
method.

	Returns

	arr – A NumPy matrix object with the same shape and containing
the same data represented by the sparse matrix, with the
requested memory order. If out was passed and was an
array (rather than a numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix]), it will be filled
with the appropriate values and returned wrapped in a
numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] object that shares the same memory.

	Return type

	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix], 2-D

	
todia(copy=False)

	Convert this matrix to sparse DIAgonal format.

With copy=False, the data/indices may be shared between this matrix and
the resultant dia_matrix.

	
todok(copy=False)

	Convert this matrix to Dictionary Of Keys format.

With copy=False, the data/indices may be shared between this matrix and
the resultant dok_matrix.

	
tolil(copy=False)

	Convert this matrix to List of Lists format.

With copy=False, the data/indices may be shared between this matrix and
the resultant lil_matrix.

	
trace(offset=0)

	Returns the sum along diagonals of the sparse matrix.

	Parameters

	offset (int [https://docs.python.org/3/library/functions.html#int], optional) – Which diagonal to get, corresponding to elements a[i, i+offset].
Default: 0 (the main diagonal).

	
transpose(axes=None, copy=False)

	Reverses the dimensions of the sparse matrix.

	Parameters

	
	axes (None, optional) – This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except
for the default value.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Indicates whether or not attributes of self should be
copied whenever possible. The degree to which attributes
are copied varies depending on the type of sparse matrix
being used.

	Returns

	p

	Return type

	self with the dimensions reversed.

See also

	numpy.matrix.transpose [https://numpy.org/doc/stable/reference/generated/numpy.matrix.transpose.html#numpy.matrix.transpose]
	NumPy’s implementation of ‘transpose’ for matrices

	
trunc()

	Element-wise trunc.

See numpy.trunc [https://numpy.org/doc/stable/reference/generated/numpy.trunc.html#numpy.trunc] for more information.

	
__array_priority__ = 10.1

	

	
__hash__ = None

	

	
property dtype

	

	
format = 'csc'

	

	
property has_canonical_format

	Determine whether the matrix has sorted indices and no duplicates

	Returns
	
	True: if the above applies

	False: otherwise

has_canonical_format implies has_sorted_indices, so if the latter flag
is False, so will the former be; if the former is found True, the
latter flag is also set.

	
property has_sorted_indices

	Determine whether the matrix has sorted indices

	Returns
	
	True: if the indices of the matrix are in sorted order

	False: otherwise

	
ndim = 2

	

	
property nnz

	Number of stored values, including explicit zeros.

See also

	count_nonzero
	Number of non-zero entries

	
property shape

	Get shape of a matrix.

egttools.utils.csr_matrix

	
class csr_matrix(arg1, shape=None, dtype=None, copy=False)

	Bases: _cs_matrix

Compressed Sparse Row matrix

	This can be instantiated in several ways:
	
	csr_matrix(D)
	with a dense matrix or rank-2 ndarray D

	csr_matrix(S)
	with another sparse matrix S (equivalent to S.tocsr())

	csr_matrix((M, N), [dtype])
	to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype=’d’.

	csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
	where data, row_ind and col_ind satisfy the
relationship a[row_ind[k], col_ind[k]] = data[k].

	csr_matrix((data, indices, indptr), [shape=(M, N)])
	is the standard CSR representation where the column indices for
row i are stored in indices[indptr[i]:indptr[i+1]] and their
corresponding values are stored in data[indptr[i]:indptr[i+1]].
If the shape parameter is not supplied, the matrix dimensions
are inferred from the index arrays.

	
dtype

	Data type of the matrix

	Type

	dtype

	
shape

	Shape of the matrix

	Type

	2-tuple

	
ndim

	Number of dimensions (this is always 2)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
nnz

	Number of stored values, including explicit zeros

	
data

	CSR format data array of the matrix

	
indices

	CSR format index array of the matrix

	
indptr

	CSR format index pointer array of the matrix

	
has_sorted_indices

	Whether indices are sorted

Notes

Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.

	Advantages of the CSR format
	
	efficient arithmetic operations CSR + CSR, CSR * CSR, etc.

	efficient row slicing

	fast matrix vector products

	Disadvantages of the CSR format
	
	slow column slicing operations (consider CSC)

	changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> csr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
 [0, 0, 3],
 [4, 5, 6]])

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
 [0, 0, 3],
 [4, 5, 6]])

Duplicate entries are summed together:

>>> row = np.array([0, 1, 2, 0])
>>> col = np.array([0, 1, 1, 0])
>>> data = np.array([1, 2, 4, 8])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[9, 0, 0],
 [0, 2, 0],
 [0, 4, 0]])

As an example of how to construct a CSR matrix incrementally,
the following snippet builds a term-document matrix from texts:

>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
... for term in d:
... index = vocabulary.setdefault(term, len(vocabulary))
... indices.append(index)
... data.append(1)
... indptr.append(len(indices))
...
>>> csr_matrix((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
 [0, 1, 1, 1]])

Methods

	arcsin

	Element-wise arcsin.

	arcsinh

	Element-wise arcsinh.

	arctan

	Element-wise arctan.

	arctanh

	Element-wise arctanh.

	argmax

	Return indices of maximum elements along an axis.

	argmin

	Return indices of minimum elements along an axis.

	asformat

	Return this matrix in the passed format.

	asfptype

	Upcast matrix to a floating point format (if necessary)

	astype

	Cast the matrix elements to a specified type.

	ceil

	Element-wise ceil.

	check_format

	check whether the matrix format is valid

	conj

	Element-wise complex conjugation.

	conjugate

	Element-wise complex conjugation.

	copy

	Returns a copy of this matrix.

	count_nonzero

	Number of non-zero entries, equivalent to

	deg2rad

	Element-wise deg2rad.

	diagonal

	Returns the kth diagonal of the matrix.

	dot

	Ordinary dot product

	eliminate_zeros

	Remove zero entries from the matrix

	expm1

	Element-wise expm1.

	floor

	Element-wise floor.

	getH

	Return the Hermitian transpose of this matrix.

	get_shape

	Get shape of a matrix.

	getcol

	Returns a copy of column i of the matrix, as a (m x 1) CSR matrix (column vector).

	getformat

	Format of a matrix representation as a string.

	getmaxprint

	Maximum number of elements to display when printed.

	getnnz

	Number of stored values, including explicit zeros.

	getrow

	Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).

	log1p

	Element-wise log1p.

	max

	Return the maximum of the matrix or maximum along an axis.

	maximum

	Element-wise maximum between this and another matrix.

	mean

	Compute the arithmetic mean along the specified axis.

	min

	Return the minimum of the matrix or maximum along an axis.

	minimum

	Element-wise minimum between this and another matrix.

	multiply

	Point-wise multiplication by another matrix, vector, or scalar.

	nonzero

	nonzero indices

	power

	This function performs element-wise power.

	prune

	Remove empty space after all non-zero elements.

	rad2deg

	Element-wise rad2deg.

	reshape

	Gives a new shape to a sparse matrix without changing its data.

	resize

	Resize the matrix in-place to dimensions given by shape

	rint

	Element-wise rint.

	set_shape

	See reshape.

	setdiag

	Set diagonal or off-diagonal elements of the array.

	sign

	Element-wise sign.

	sin

	Element-wise sin.

	sinh

	Element-wise sinh.

	sort_indices

	Sort the indices of this matrix in place

	sorted_indices

	Return a copy of this matrix with sorted indices

	sqrt

	Element-wise sqrt.

	sum

	Sum the matrix elements over a given axis.

	sum_duplicates

	Eliminate duplicate matrix entries by adding them together

	tan

	Element-wise tan.

	tanh

	Element-wise tanh.

	toarray

	Return a dense ndarray representation of this matrix.

	tobsr

	Convert this matrix to Block Sparse Row format.

	tocoo

	Convert this matrix to COOrdinate format.

	tocsc

	Convert this matrix to Compressed Sparse Column format.

	tocsr

	Convert this matrix to Compressed Sparse Row format.

	todense

	Return a dense matrix representation of this matrix.

	todia

	Convert this matrix to sparse DIAgonal format.

	todok

	Convert this matrix to Dictionary Of Keys format.

	tolil

	Convert this matrix to List of Lists format.

	trace

	Returns the sum along diagonals of the sparse matrix.

	transpose

	Reverses the dimensions of the sparse matrix.

	trunc

	Element-wise trunc.

Attributes

	dtype

	

	format

	

	has_canonical_format

	Determine whether the matrix has sorted indices and no duplicates

	has_sorted_indices

	Determine whether the matrix has sorted indices

	ndim

	

	nnz

	Number of stored values, including explicit zeros.

	shape

	Get shape of a matrix.

	
__abs__()

	

	
__add__(other)

	

	
__bool__()

	

	
__div__(other)

	

	
__eq__(other)

	Return self==value.

	
__ge__(other)

	Return self>=value.

	
__getattr__(attr)

	

	
__getitem__(key)

	

	
__gt__(other)

	Return self>value.

	
__iadd__(other)

	

	
__idiv__(other)

	

	
__imul__(other)

	

	
__init__(arg1, shape=None, dtype=None, copy=False)

	

	
__isub__(other)

	

	
__iter__()

	

	
__itruediv__(other)

	

	
__le__(other)

	Return self<=value.

	
__len__()

	

	
__lt__(other)

	Return self<value.

	
__matmul__(other)

	

	
__mul__(other)

	

	
__ne__(other)

	Return self!=value.

	
__neg__()

	

	
__nonzero__()

	

	
__pow__(other)

	

	
__radd__(other)

	

	
__rdiv__(other)

	

	
__repr__()

	Return repr(self).

	
__rmatmul__(other)

	

	
__rmul__(other)

	

	
__round__(ndigits=0)

	

	
__rsub__(other)

	

	
__rtruediv__(other)

	

	
__setitem__(key, x)

	

	
__str__()

	Return str(self).

	
__sub__(other)

	

	
__truediv__(other)

	

	
arcsin()

	Element-wise arcsin.

See numpy.arcsin [https://numpy.org/doc/stable/reference/generated/numpy.arcsin.html#numpy.arcsin] for more information.

	
arcsinh()

	Element-wise arcsinh.

See numpy.arcsinh [https://numpy.org/doc/stable/reference/generated/numpy.arcsinh.html#numpy.arcsinh] for more information.

	
arctan()

	Element-wise arctan.

See numpy.arctan [https://numpy.org/doc/stable/reference/generated/numpy.arctan.html#numpy.arctan] for more information.

	
arctanh()

	Element-wise arctanh.

See numpy.arctanh [https://numpy.org/doc/stable/reference/generated/numpy.arctanh.html#numpy.arctanh] for more information.

	
argmax(axis=None, out=None)

	Return indices of maximum elements along an axis.

Implicit zero elements are also taken into account. If there are
several maximum values, the index of the first occurrence is returned.

	Parameters

	
	axis ({-2, -1, 0, 1, None}, optional) – Axis along which the argmax is computed. If None (default), index
of the maximum element in the flatten data is returned.

	out (None, optional) – This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.

	Returns

	ind – Indices of maximum elements. If matrix, its size along axis is 1.

	Return type

	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or int [https://docs.python.org/3/library/functions.html#int]

	
argmin(axis=None, out=None)

	Return indices of minimum elements along an axis.

Implicit zero elements are also taken into account. If there are
several minimum values, the index of the first occurrence is returned.

	Parameters

	
	axis ({-2, -1, 0, 1, None}, optional) – Axis along which the argmin is computed. If None (default), index
of the minimum element in the flatten data is returned.

	out (None, optional) – This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.

	Returns

	ind – Indices of minimum elements. If matrix, its size along axis is 1.

	Return type

	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] or int [https://docs.python.org/3/library/functions.html#int]

	
asformat(format, copy=False)

	Return this matrix in the passed format.

	Parameters

	
	format ({str, None}) – The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …)
or None for no conversion.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the result is guaranteed to not share data with self.

	Returns

	A

	Return type

	This matrix in the passed format.

	
asfptype()

	Upcast matrix to a floating point format (if necessary)

	
astype(dtype, casting='unsafe', copy=True)

	Cast the matrix elements to a specified type.

	Parameters

	
	dtype (string or numpy dtype) – Typecode or data-type to which to cast the data.

	casting ({'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional) – Controls what kind of data casting may occur.
Defaults to ‘unsafe’ for backwards compatibility.
‘no’ means the data types should not be cast at all.
‘equiv’ means only byte-order changes are allowed.
‘safe’ means only casts which can preserve values are allowed.
‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.
‘unsafe’ means any data conversions may be done.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If copy is False [https://docs.python.org/3/library/constants.html#False], the result might share some memory with this
matrix. If copy is True [https://docs.python.org/3/library/constants.html#True], it is guaranteed that the result and
this matrix do not share any memory.

	
ceil()

	Element-wise ceil.

See numpy.ceil [https://numpy.org/doc/stable/reference/generated/numpy.ceil.html#numpy.ceil] for more information.

	
check_format(full_check=True)

	check whether the matrix format is valid

	Parameters

	full_check (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True [https://docs.python.org/3/library/constants.html#True], rigorous check, O(N) operations. Otherwise
basic check, O(1) operations (default True).

	
conj(copy=True)

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the result is guaranteed to not share data with self.

	Returns

	A

	Return type

	The element-wise complex conjugate.

	
conjugate(copy=True)

	Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False,
this method does nothing and the data is not copied.

	Parameters

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the result is guaranteed to not share data with self.

	Returns

	A

	Return type

	The element-wise complex conjugate.

	
copy()

	Returns a copy of this matrix.

No data/indices will be shared between the returned value and current
matrix.

	
count_nonzero()

	Number of non-zero entries, equivalent to

np.count_nonzero(a.toarray())

Unlike getnnz() and the nnz property, which return the number of stored
entries (the length of the data attribute), this method counts the
actual number of non-zero entries in data.

	
deg2rad()

	Element-wise deg2rad.

See numpy.deg2rad [https://numpy.org/doc/stable/reference/generated/numpy.deg2rad.html#numpy.deg2rad] for more information.

	
diagonal(k=0)

	Returns the kth diagonal of the matrix.

	Parameters

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which diagonal to get, corresponding to elements a[i, i+k].
Default: 0 (the main diagonal).

New in version 1.0.

See also

	numpy.diagonal [https://numpy.org/doc/stable/reference/generated/numpy.diagonal.html#numpy.diagonal]
	Equivalent numpy function.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])

	
dot(other)

	Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([1, -3, -1], dtype=int64)

	
eliminate_zeros()

	Remove zero entries from the matrix

This is an in place operation.

	
expm1()

	Element-wise expm1.

See numpy.expm1 [https://numpy.org/doc/stable/reference/generated/numpy.expm1.html#numpy.expm1] for more information.

	
floor()

	Element-wise floor.

See numpy.floor [https://numpy.org/doc/stable/reference/generated/numpy.floor.html#numpy.floor] for more information.

	
getH()

	Return the Hermitian transpose of this matrix.

See also

	numpy.matrix.getH [https://numpy.org/doc/stable/reference/generated/numpy.matrix.getH.html#numpy.matrix.getH]
	NumPy’s implementation of getH for matrices

	
get_shape()

	Get shape of a matrix.

	
getcol(i)

	Returns a copy of column i of the matrix, as a (m x 1)
CSR matrix (column vector).

	
getformat()

	Format of a matrix representation as a string.

	
getmaxprint()

	Maximum number of elements to display when printed.

	
getnnz(axis=None)

	Number of stored values, including explicit zeros.

	Parameters

	axis (None, 0, or 1) – Select between the number of values across the whole matrix, in
each column, or in each row.

See also

	count_nonzero
	Number of non-zero entries

	
getrow(i)

	Returns a copy of row i of the matrix, as a (1 x n)
CSR matrix (row vector).

	
log1p()

	Element-wise log1p.

See numpy.log1p [https://numpy.org/doc/stable/reference/generated/numpy.log1p.html#numpy.log1p] for more information.

	
max(axis=None, out=None)

	Return the maximum of the matrix or maximum along an axis.
This takes all elements into account, not just the non-zero ones.

	Parameters

	
	axis ({-2, -1, 0, 1, None} optional) – Axis along which the sum is computed. The default is to
compute the maximum over all the matrix elements, returning
a scalar (i.e., axis = None [https://docs.python.org/3/library/constants.html#None]).

	out (None, optional) – This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except
for the default value, as this argument is not used.

	Returns

	amax – Maximum of a. If axis is None, the result is a scalar value.
If axis is given, the result is a sparse.coo_matrix of dimension
a.ndim - 1.

	Return type

	coo_matrix or scalar

See also

	min
	The minimum value of a sparse matrix along a given axis.

	numpy.matrix.max [https://numpy.org/doc/stable/reference/generated/numpy.matrix.max.html#numpy.matrix.max]
	NumPy’s implementation of ‘max’ for matrices

	
maximum(other)

	Element-wise maximum between this and another matrix.

	
mean(axis=None, dtype=None, out=None)

	Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken
over all elements in the matrix by default, otherwise over the
specified axis. float64 intermediate and return values are used
for integer inputs.

	Parameters

	
	axis ({-2, -1, 0, 1, None} optional) – Axis along which the mean is computed. The default is to compute
the mean of all elements in the matrix (i.e., axis = None [https://docs.python.org/3/library/constants.html#None]).

	dtype (data-type, optional) – Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the
input dtype.

New in version 0.18.0.

	out (np.matrix, optional) – Alternative output matrix in which to place the result. It must
have the same shape as the expected output, but the type of the
output values will be cast if necessary.

New in version 0.18.0.

	Returns

	m

	Return type

	np.matrix

See also

	numpy.matrix.mean [https://numpy.org/doc/stable/reference/generated/numpy.matrix.mean.html#numpy.matrix.mean]
	NumPy’s implementation of ‘mean’ for matrices

	
min(axis=None, out=None)

	Return the minimum of the matrix or maximum along an axis.
This takes all elements into account, not just the non-zero ones.

	Parameters

	
	axis ({-2, -1, 0, 1, None} optional) – Axis along which the sum is computed. The default is to
compute the minimum over all the matrix elements, returning
a scalar (i.e., axis = None [https://docs.python.org/3/library/constants.html#None]).

	out (None, optional) – This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.

	Returns

	amin – Minimum of a. If axis is None, the result is a scalar value.
If axis is given, the result is a sparse.coo_matrix of dimension
a.ndim - 1.

	Return type

	coo_matrix or scalar

See also

	max
	The maximum value of a sparse matrix along a given axis.

	numpy.matrix.min [https://numpy.org/doc/stable/reference/generated/numpy.matrix.min.html#numpy.matrix.min]
	NumPy’s implementation of ‘min’ for matrices

	
minimum(other)

	Element-wise minimum between this and another matrix.

	
multiply(other)

	Point-wise multiplication by another matrix, vector, or
scalar.

	
nonzero()

	nonzero indices

Returns a tuple of arrays (row,col) containing the indices
of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

	
power(n, dtype=None)

	This function performs element-wise power.

	Parameters

	
	n (n is a scalar) –

	dtype (If dtype is not specified, the current dtype will be preserved.) –

	
prune()

	Remove empty space after all non-zero elements.

	
rad2deg()

	Element-wise rad2deg.

See numpy.rad2deg [https://numpy.org/doc/stable/reference/generated/numpy.rad2deg.html#numpy.rad2deg] for more information.

	
reshape(self, shape, order='C', copy=False)

	Gives a new shape to a sparse matrix without changing its data.

	Parameters

	
	shape (length-2 tuple of ints) – The new shape should be compatible with the original shape.

	order ({'C', 'F'}, optional) – Read the elements using this index order. ‘C’ means to read and
write the elements using C-like index order; e.g., read entire first
row, then second row, etc. ‘F’ means to read and write the elements
using Fortran-like index order; e.g., read entire first column, then
second column, etc.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Indicates whether or not attributes of self should be copied
whenever possible. The degree to which attributes are copied varies
depending on the type of sparse matrix being used.

	Returns

	reshaped_matrix – A sparse matrix with the given shape, not necessarily of the same
format as the current object.

	Return type

	sparse matrix

See also

	numpy.matrix.reshape [https://numpy.org/doc/stable/reference/generated/numpy.matrix.reshape.html#numpy.matrix.reshape]
	NumPy’s implementation of ‘reshape’ for matrices

	
resize(*shape)

	Resize the matrix in-place to dimensions given by shape

Any elements that lie within the new shape will remain at the same
indices, while non-zero elements lying outside the new shape are
removed.

	Parameters

	shape ((int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])) – number of rows and columns in the new matrix

Notes

The semantics are not identical to numpy.ndarray.resize [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.resize.html#numpy.ndarray.resize] or
numpy.resize [https://numpy.org/doc/stable/reference/generated/numpy.resize.html#numpy.resize]. Here, the same data will be maintained at each index
before and after reshape, if that index is within the new bounds. In
numpy, resizing maintains contiguity of the array, moving elements
around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes
(arrays, etc.) will be modified in place or replaced with new objects.

	
rint()

	Element-wise rint.

See numpy.rint [https://numpy.org/doc/stable/reference/generated/numpy.rint.html#numpy.rint] for more information.

	
set_shape(shape)

	See reshape.

	
setdiag(values, k=0)

	Set diagonal or off-diagonal elements of the array.

	Parameters

	
	values (array_like) – New values of the diagonal elements.

Values may have any length. If the diagonal is longer than values,
then the remaining diagonal entries will not be set. If values are
longer than the diagonal, then the remaining values are ignored.

If a scalar value is given, all of the diagonal is set to it.

	k (int [https://docs.python.org/3/library/functions.html#int], optional) – Which off-diagonal to set, corresponding to elements a[i,i+k].
Default: 0 (the main diagonal).

	
sign()

	Element-wise sign.

See numpy.sign [https://numpy.org/doc/stable/reference/generated/numpy.sign.html#numpy.sign] for more information.

	
sin()

	Element-wise sin.

See numpy.sin [https://numpy.org/doc/stable/reference/generated/numpy.sin.html#numpy.sin] for more information.

	
sinh()

	Element-wise sinh.

See numpy.sinh [https://numpy.org/doc/stable/reference/generated/numpy.sinh.html#numpy.sinh] for more information.

	
sort_indices()

	Sort the indices of this matrix in place

	
sorted_indices()

	Return a copy of this matrix with sorted indices

	
sqrt()

	Element-wise sqrt.

See numpy.sqrt [https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html#numpy.sqrt] for more information.

	
sum(axis=None, dtype=None, out=None)

	Sum the matrix elements over a given axis.

	Parameters

	
	axis ({-2, -1, 0, 1, None} optional) – Axis along which the sum is computed. The default is to
compute the sum of all the matrix elements, returning a scalar
(i.e., axis = None [https://docs.python.org/3/library/constants.html#None]).

	dtype (dtype, optional) – The type of the returned matrix and of the accumulator in which
the elements are summed. The dtype of a is used by default
unless a has an integer dtype of less precision than the default
platform integer. In that case, if a is signed then the platform
integer is used while if a is unsigned then an unsigned integer
of the same precision as the platform integer is used.

New in version 0.18.0.

	out (np.matrix, optional) – Alternative output matrix in which to place the result. It must
have the same shape as the expected output, but the type of the
output values will be cast if necessary.

New in version 0.18.0.

	Returns

	sum_along_axis – A matrix with the same shape as self, with the specified
axis removed.

	Return type

	np.matrix

See also

	numpy.matrix.sum [https://numpy.org/doc/stable/reference/generated/numpy.matrix.sum.html#numpy.matrix.sum]
	NumPy’s implementation of ‘sum’ for matrices

	
sum_duplicates()

	Eliminate duplicate matrix entries by adding them together

This is an in place operation.

	
tan()

	Element-wise tan.

See numpy.tan [https://numpy.org/doc/stable/reference/generated/numpy.tan.html#numpy.tan] for more information.

	
tanh()

	Element-wise tanh.

See numpy.tanh [https://numpy.org/doc/stable/reference/generated/numpy.tanh.html#numpy.tanh] for more information.

	
toarray(order=None, out=None)

	Return a dense ndarray representation of this matrix.

	Parameters

	
	order ({'C', 'F'}, optional) – Whether to store multidimensional data in C (row-major)
or Fortran (column-major) order in memory. The default
is ‘None’, which provides no ordering guarantees.
Cannot be specified in conjunction with the out
argument.

	out (ndarray, 2-D, optional) – If specified, uses this array as the output buffer
instead of allocating a new array to return. The provided
array must have the same shape and dtype as the sparse
matrix on which you are calling the method. For most
sparse types, out is required to be memory contiguous
(either C or Fortran ordered).

	Returns

	arr – An array with the same shape and containing the same
data represented by the sparse matrix, with the requested
memory order. If out was passed, the same object is
returned after being modified in-place to contain the
appropriate values.

	Return type

	ndarray, 2-D

	
tobsr(blocksize=None, copy=True)

	Convert this matrix to Block Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and
the resultant bsr_matrix.

When blocksize=(R, C) is provided, it will be used for construction of
the bsr_matrix.

	
tocoo(copy=True)

	Convert this matrix to COOrdinate format.

With copy=False, the data/indices may be shared between this matrix and
the resultant coo_matrix.

	
tocsc(copy=False)

	Convert this matrix to Compressed Sparse Column format.

With copy=False, the data/indices may be shared between this matrix and
the resultant csc_matrix.

	
tocsr(copy=False)

	Convert this matrix to Compressed Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and
the resultant csr_matrix.

	
todense(order=None, out=None)

	Return a dense matrix representation of this matrix.

	Parameters

	
	order ({'C', 'F'}, optional) – Whether to store multi-dimensional data in C (row-major)
or Fortran (column-major) order in memory. The default
is ‘None’, which provides no ordering guarantees.
Cannot be specified in conjunction with the out
argument.

	out (ndarray, 2-D, optional) – If specified, uses this array (or numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix]) as the
output buffer instead of allocating a new array to
return. The provided array must have the same shape and
dtype as the sparse matrix on which you are calling the
method.

	Returns

	arr – A NumPy matrix object with the same shape and containing
the same data represented by the sparse matrix, with the
requested memory order. If out was passed and was an
array (rather than a numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix]), it will be filled
with the appropriate values and returned wrapped in a
numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix] object that shares the same memory.

	Return type

	numpy.matrix [https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix], 2-D

	
todia(copy=False)

	Convert this matrix to sparse DIAgonal format.

With copy=False, the data/indices may be shared between this matrix and
the resultant dia_matrix.

	
todok(copy=False)

	Convert this matrix to Dictionary Of Keys format.

With copy=False, the data/indices may be shared between this matrix and
the resultant dok_matrix.

	
tolil(copy=False)

	Convert this matrix to List of Lists format.

With copy=False, the data/indices may be shared between this matrix and
the resultant lil_matrix.

	
trace(offset=0)

	Returns the sum along diagonals of the sparse matrix.

	Parameters

	offset (int [https://docs.python.org/3/library/functions.html#int], optional) – Which diagonal to get, corresponding to elements a[i, i+offset].
Default: 0 (the main diagonal).

	
transpose(axes=None, copy=False)

	Reverses the dimensions of the sparse matrix.

	Parameters

	
	axes (None, optional) – This argument is in the signature solely for NumPy
compatibility reasons. Do not pass in anything except
for the default value.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Indicates whether or not attributes of self should be
copied whenever possible. The degree to which attributes
are copied varies depending on the type of sparse matrix
being used.

	Returns

	p

	Return type

	self with the dimensions reversed.

See also

	numpy.matrix.transpose [https://numpy.org/doc/stable/reference/generated/numpy.matrix.transpose.html#numpy.matrix.transpose]
	NumPy’s implementation of ‘transpose’ for matrices

	
trunc()

	Element-wise trunc.

See numpy.trunc [https://numpy.org/doc/stable/reference/generated/numpy.trunc.html#numpy.trunc] for more information.

	
__annotations__ = {}

	

	
__array_priority__ = 10.1

	

	
__hash__ = None

	

	
property dtype

	

	
format = 'csr'

	

	
property has_canonical_format

	Determine whether the matrix has sorted indices and no duplicates

	Returns
	
	True: if the above applies

	False: otherwise

has_canonical_format implies has_sorted_indices, so if the latter flag
is False, so will the former be; if the former is found True, the
latter flag is also set.

	
property has_sorted_indices

	Determine whether the matrix has sorted indices

	Returns
	
	True: if the indices of the matrix are in sorted order

	False: otherwise

	
ndim = 2

	

	
property nnz

	Number of stored values, including explicit zeros.

See also

	count_nonzero
	Number of non-zero entries

	
property shape

	Get shape of a matrix.

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 egttools	

 	
 	
 egttools.analytical	

 	
 	
 egttools.analytical.sed_analytical	

 	
 	
 egttools.analytical.utils	

 	
 	
 egttools.behaviors	

 	
 	
 egttools.behaviors.CPR	

 	
 	
 egttools.behaviors.CPR.abstract_cpr_strategy	

 	
 	
 egttools.behaviors.CPR.cpr_strategies	

 	
 	
 egttools.behaviors.CRD	

 	
 	
 egttools.behaviors.CRD.goal_based	

 	
 	
 egttools.behaviors.CRD.moving_average	

 	
 	
 egttools.behaviors.CRD.time_based	

 	
 	
 egttools.behaviors.NormalForm	

 	
 	
 egttools.behaviors.NormalForm.TwoActions	

 	
 	
 egttools.behaviors.NormalForm.TwoActions.nfg_strategies	

 	
 	
 egttools.behaviors.opinion_behaviors	

 	
 	
 egttools.behaviors.pgg_behaviors	

 	
 	
 egttools.datastructures	

 	
 	
 egttools.distributions	

 	
 	
 egttools.games	

 	
 	
 egttools.games.abstract_games	

 	
 	
 egttools.games.informal_risk	

 	
 	
 egttools.games.nonlinear_games	

 	
 	
 egttools.games.opinion_game	

 	
 	
 egttools.games.pgg	

 	
 	
 egttools.helpers	

 	
 	
 egttools.helpers.vectorized	

 	
 	
 egttools.numerical	

 	
 	
 egttools.numerical.numerical	

 	
 	
 egttools.plotting	

 	
 	
 egttools.plotting.helpers	

 	
 	
 egttools.plotting.indicators	

 	
 	
 egttools.plotting.simplex2d	

 	
 	
 egttools.plotting.simplified	

 	
 	
 egttools.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

_

 	
 	__abs__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__abstractmethods__ (ABC attribute)

 	(AbstractCPRStrategy attribute), [1], [2]

 	(CommitmentStrategy attribute)

 	(FairExtraction attribute)

 	(FakeStrategy attribute)

 	(FixedExtraction attribute)

 	(FreeStrategy attribute)

 	(HighExtraction attribute)

 	(NashExtraction attribute)

 	__add__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__annotations__ (AbstractCPRStrategy attribute), [1], [2]

 	(CommitmentStrategy attribute)

 	(csr_matrix attribute)

 	(FairExtraction attribute)

 	(FakeStrategy attribute)

 	(FixedExtraction attribute)

 	(FreeStrategy attribute)

 	(HighExtraction attribute)

 	(NashExtraction attribute)

 	(Simplex2D attribute), [1]

 	__array_priority__ (csc_matrix attribute)

 	(csr_matrix attribute), [1]

 	(lil_matrix attribute)

 	__bool__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__bound__ (TypeVar attribute)

 	__call__() (AutoMinorLocator method)

 	__constraints__ (TypeVar attribute)

 	__contravariant__ (TypeVar attribute)

 	__copy__() (TypeVar method)

 	__covariant__ (TypeVar attribute)

 	__deepcopy__() (TypeVar method)

 	__div__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__eq__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__ge__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__getattr__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__getattribute__() (permutations method)

 	__getitem__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__gt__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__hash__ (csc_matrix attribute)

 	(csr_matrix attribute), [1]

 	(lil_matrix attribute)

 	__iadd__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__idiv__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__imul__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__init__() (AbstractCRDStrategy method), [1], [2], [3]

 	(AbstractGame method), [1], [2], [3], [4]

 	(AbstractNFGStrategy method), [1]

 	(AbstractNPlayerGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGameExpectedPayoff method)

 	(AbstractTwoPLayerGame method), [1]

 	(ActionInertia method)

 	(AutoMinorLocator method)

 	(Circle method)

 	(CommitmentStrategy method)

 	(CommonPoolResourceDilemma method), [1]

 	(CommonPoolResourceDilemmaCommitment method), [1]

 	(Cooperator method)

 	(CRDGame method)

 	(CRDGameTU method)

 	(CRDMemoryOnePlayer method)

 	(csc_matrix method)

 	(csr_matrix method), [1]

 	(DataTable method)

 	(Defector method)

 	(Detective method), [1]

 	(EpsilonGRIM method), [1]

 	(EpsilonTFT method), [1]

 	(FixedExtraction method)

 	(GenerousTFT method)

 	(GoalBasedCRDStrategy method), [1]

 	(GradualTFT method)

 	(GRIM method)

 	(ImperfectTFT method)

 	(InformalRiskGame method), [1]

 	(lil_matrix method)

 	(Matrix2PlayerGameHolder method), [1]

 	(MatrixNPlayerGameHolder method), [1]

 	(MemoryOneStrategy method), [1]

 	(MovingAverageCRDStrategy method), [1]

 	(NormalFormGame method)

 	(NPlayerStagHunt method), [1]

 	(OneShotCRD method)

 	(Opinion method)

 	(OpinionGame method)

 	(PairwiseComparison method), [1], [2]

 	(PairwiseComparisonNumerical method), [1]

 	(Pavlov method)

 	(PGG method), [1]

 	(PGGOneShotStrategy method), [1]

 	(Random method), [1], [2], [3]

 	(Simplex2D method), [1], [2]

 	(StochDynamics method), [1], [2]

 	(SuspiciousTFT method)

 	(TFT method)

 	(TFTT method)

 	(TimeBasedCRDStrategy method), [1]

 	(TimingUncertainty method)

 	(TTFT method)

 	(TypeVar method)

 	__init_subclass__() (Circle class method)

 	(TypeVar class method)

 	__isub__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__iter__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	(permutations method)

 	__itruediv__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__le__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__len__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__lt__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__matmul__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	
 	__mul__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__name__ (TypeVar attribute)

 	__ne__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__neg__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__new__() (AbstractCRDStrategy method), [1], [2], [3]

 	(AbstractGame method), [1], [2], [3], [4]

 	(AbstractNFGStrategy method), [1]

 	(AbstractNPlayerGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGameExpectedPayoff method)

 	(AbstractTwoPLayerGame method), [1]

 	(ActionInertia method)

 	(CommonPoolResourceDilemma method), [1]

 	(CommonPoolResourceDilemmaCommitment method), [1]

 	(Cooperator method)

 	(CRDGame method)

 	(CRDGameTU method)

 	(CRDMemoryOnePlayer method)

 	(DataTable method)

 	(Defector method)

 	(Detective method), [1]

 	(EpsilonGRIM method), [1]

 	(EpsilonTFT method), [1]

 	(GenerousTFT method)

 	(GoalBasedCRDStrategy method), [1]

 	(GradualTFT method)

 	(GRIM method)

 	(ImperfectTFT method)

 	(InformalRiskGame method), [1]

 	(Matrix2PlayerGameHolder method), [1]

 	(MatrixNPlayerGameHolder method), [1]

 	(MemoryOneStrategy method), [1]

 	(MovingAverageCRDStrategy method), [1]

 	(NormalFormGame method)

 	(NPlayerStagHunt method), [1]

 	(OneShotCRD method)

 	(OpinionGame method)

 	(PairwiseComparison method), [1], [2]

 	(PairwiseComparisonNumerical method), [1]

 	(Pavlov method)

 	(permutations method)

 	(PGG method), [1]

 	(Random method), [1], [2], [3]

 	(SuspiciousTFT method)

 	(TFT method)

 	(TFTT method)

 	(TimeBasedCRDStrategy method), [1]

 	(TimingUncertainty method)

 	(TTFT method)

 	__next__() (permutations method)

 	__nonzero__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__pow__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__radd__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__rdiv__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__reduce__() (permutations method)

 	(TypeVar method)

 	__repr__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	(TypeVar method)

 	__rmatmul__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__rmul__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__round__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__rsub__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__rtruediv__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__setitem__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__sizeof__() (permutations method)

 	__slots__ (ABC attribute)

 	(AbstractCPRStrategy attribute), [1], [2]

 	(CommitmentStrategy attribute)

 	(FairExtraction attribute)

 	(FakeStrategy attribute)

 	(FixedExtraction attribute)

 	(FreeStrategy attribute)

 	(HighExtraction attribute)

 	(NashExtraction attribute)

 	(TypeVar attribute)

 	__str__() (AbstractCPRStrategy method), [1], [2]

 	(AbstractGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGameExpectedPayoff method)

 	(AbstractTwoPLayerGame method), [1]

 	(Circle method)

 	(CommitmentStrategy method)

 	(CommonPoolResourceDilemma method), [1]

 	(CommonPoolResourceDilemmaCommitment method), [1]

 	(CRDGame method)

 	(CRDGameTU method)

 	(CRDMemoryOnePlayer method)

 	(csc_matrix method)

 	(csr_matrix method), [1]

 	(Detective method), [1]

 	(EpsilonGRIM method), [1]

 	(EpsilonTFT method), [1]

 	(FairExtraction method)

 	(FakeStrategy method)

 	(FixedExtraction method)

 	(FreeStrategy method)

 	(GoalBasedCRDStrategy method), [1]

 	(HighExtraction method)

 	(InformalRiskGame method), [1]

 	(lil_matrix method)

 	(Matrix2PlayerGameHolder method), [1]

 	(MatrixNPlayerGameHolder method), [1]

 	(MemoryOneStrategy method), [1]

 	(MovingAverageCRDStrategy method), [1]

 	(NashExtraction method)

 	(NormalFormGame method)

 	(NPlayerStagHunt method), [1]

 	(OneShotCRD method)

 	(OpinionGame method)

 	(PGG method), [1]

 	(TimeBasedCRDStrategy method), [1]

 	__sub__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	__truediv__() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

A

 	
 	ABC (class in egttools.behaviors.CPR.abstract_cpr_strategy)

 	AbstractCPRStrategy (class in egttools.behaviors.CPR.abstract_cpr_strategy)

 	(class in egttools.behaviors.CPR.cpr_strategies)

 	(class in egttools.games.nonlinear_games)

 	AbstractCRDStrategy (class in egttools.behaviors.CRD)

 	(class in egttools.behaviors.CRD.goal_based)

 	(class in egttools.behaviors.CRD.moving_average)

 	(class in egttools.behaviors.CRD.time_based)

 	AbstractGame (class in egttools.games)

 	(class in egttools.games.abstract_games)

 	(class in egttools.games.informal_risk)

 	(class in egttools.plotting.simplified)

 	(class in egttools.utils)

 	abstractmethod() (in module egttools.behaviors.CPR.abstract_cpr_strategy)

 	(in module egttools.games.abstract_games)

 	AbstractNFGStrategy (class in egttools.behaviors.NormalForm)

 	(class in egttools.behaviors.NormalForm.TwoActions.nfg_strategies)

 	AbstractNPlayerGame (class in egttools.games)

 	(class in egttools.games.abstract_games)

 	(class in egttools.games.nonlinear_games)

 	(class in egttools.games.opinion_game)

 	(class in egttools.games.pgg)

 	AbstractNPlayerGameExpectedPayoff (class in egttools.games.abstract_games)

 	AbstractTwoPLayerGame (class in egttools.games)

 	(class in egttools.games.abstract_games)

 	ActionInertia (class in egttools.behaviors.NormalForm.TwoActions)

 	add_arrow() (in module egttools.plotting.helpers)

 	(in module egttools.plotting.simplex2d)

 	add_axis() (Simplex2D method), [1], [2]

 	add_callback() (Circle method)

 	
 	add_colorbar() (Simplex2D method), [1], [2]

 	add_edges_with_random_drift() (Simplex2D method), [1], [2]

 	add_group_extraction() (CommonPoolResourceDilemmaCommitment method), [1]

 	add_vertex_labels() (Simplex2D method), [1], [2]

 	angle (Circle property)

 	apply_simplex_boundaries_to_gradients() (Simplex2D method), [1], [2]

 	arcsin() (csc_matrix method)

 	(csr_matrix method), [1]

 	arcsinh() (csc_matrix method)

 	(csr_matrix method), [1]

 	arctan() (csc_matrix method)

 	(csr_matrix method), [1]

 	arctanh() (csc_matrix method)

 	(csr_matrix method), [1]

 	argmax() (csc_matrix method)

 	(csr_matrix method), [1]

 	argmin() (csc_matrix method)

 	(csr_matrix method), [1]

 	asformat() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	asfptype() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	astype() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	AutoMinorLocator (class in egttools.plotting.indicators)

 	axes (Circle property)

 	axis (AutoMinorLocator attribute)

B

 	
 	barycentric_to_xy_coordinates() (in module egttools.helpers.vectorized)

 	(in module egttools.plotting.helpers)

 	(in module egttools.plotting.simplex2d)

 	(in module egttools.plotting.simplified)

 	
 	binom() (in module egttools.distributions)

C

 	
 	cache_size (PairwiseComparisonNumerical property), [1]

 	calculate_cooperation_rate() (NormalFormGame method)

 	calculate_end() (TimingUncertainty method)

 	calculate_expected_consumption() (CommonPoolResourceDilemmaCommitment method), [1]

 	calculate_fitness() (AbstractGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGameExpectedPayoff method)

 	(AbstractTwoPLayerGame method), [1]

 	(CommonPoolResourceDilemma method), [1]

 	(CommonPoolResourceDilemmaCommitment method), [1]

 	(CRDGame method)

 	(CRDGameTU method)

 	(InformalRiskGame method), [1]

 	(Matrix2PlayerGameHolder method), [1]

 	(MatrixNPlayerGameHolder method), [1]

 	(NormalFormGame method)

 	(NPlayerStagHunt method), [1]

 	(OneShotCRD method)

 	(OpinionGame method)

 	(PGG method), [1]

 	calculate_fixation_probability() (PairwiseComparison method), [1], [2]

 	calculate_full_end() (TimingUncertainty method)

 	calculate_full_transition_matrix() (StochDynamics method), [1], [2]

 	calculate_gradient_of_selection() (PairwiseComparison method), [1], [2]

 	calculate_gradients() (in module egttools.analytical.utils)

 	calculate_group_achievement() (CRDGame method)

 	(CRDGameTU method)

 	(OneShotCRD method)

 	calculate_nb_states() (in module egttools)

 	(in module egttools.analytical.sed_analytical)

 	(in module egttools.games.informal_risk)

 	(in module egttools.games.opinion_game)

 	(in module egttools.games.pgg)

 	(in module egttools.numerical.numerical)

 	(in module egttools.plotting.helpers)

 	(in module egttools.plotting.simplex2d)

 	(in module egttools.plotting.simplified)

 	calculate_nb_unique_combinations() (in module egttools.utils)

 	calculate_payoffs() (AbstractGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGameExpectedPayoff method)

 	(AbstractTwoPLayerGame method), [1]

 	(CommonPoolResourceDilemma method), [1]

 	(CommonPoolResourceDilemmaCommitment method), [1]

 	(CRDGame method)

 	(CRDGameTU method)

 	(InformalRiskGame method), [1]

 	(Matrix2PlayerGameHolder method), [1]

 	(MatrixNPlayerGameHolder method), [1]

 	(NormalFormGame method)

 	(NPlayerStagHunt method), [1]

 	(OneShotCRD method)

 	(OpinionGame method)

 	(PGG method), [1]

 	calculate_polarization() (CRDGame method)

 	(CRDGameTU method)

 	calculate_polarization_success() (CRDGame method)

 	(CRDGameTU method)

 	calculate_population_group_achievement() (CRDGame method)

 	(CRDGameTU method)

 	(OneShotCRD method)

 	calculate_stability() (in module egttools.plotting.helpers)

 	(in module egttools.plotting.simplified)

 	calculate_state() (in module egttools)

 	(in module egttools.analytical.sed_analytical)

 	(in module egttools.games.abstract_games)

 	(in module egttools.games.informal_risk)

 	(in module egttools.games.nonlinear_games)

 	(in module egttools.games.opinion_game)

 	(in module egttools.games.pgg)

 	(in module egttools.numerical.numerical)

 	
 	calculate_stationary_distribution() (in module egttools.utils)

 	(StochDynamics method), [1], [2]

 	calculate_stationary_distribution_non_hermitian() (in module egttools.utils)

 	calculate_stationary_points() (in module egttools.plotting.helpers)

 	calculate_strategies_distribution() (in module egttools)

 	(in module egttools.numerical.numerical)

 	calculate_total_extraction() (CommonPoolResourceDilemma method), [1]

 	(CommonPoolResourceDilemmaCommitment method), [1]

 	calculate_transition_and_fixation_matrix_sml() (PairwiseComparison method), [1], [2]

 	calculate_transition_matrix() (PairwiseComparison method), [1], [2]

 	ceil() (csc_matrix method)

 	(csr_matrix method), [1]

 	center (Circle property)

 	check_format() (csc_matrix method)

 	(csr_matrix method), [1]

 	check_if_commitment_validated() (CommonPoolResourceDilemmaCommitment method), [1]

 	check_if_point_in_unit_simplex() (in module egttools.analytical.utils)

 	(in module egttools.plotting.helpers)

 	check_if_there_is_random_drift() (in module egttools.analytical.utils)

 	(in module egttools.plotting.simplified)

 	check_replicator_stability_pairwise_games() (in module egttools.analytical.utils)

 	(in module egttools.plotting.simplified)

 	Circle (class in egttools.plotting.simplex2d)

 	cols (DataTable property)

 	column_types (DataTable property)

 	comb() (in module egttools.distributions)

 	combine() (in module egttools.utils)

 	CommitmentStrategy (class in egttools.behaviors.CPR.cpr_strategies)

 	CommonPoolResourceDilemma (class in egttools.games)

 	(class in egttools.games.nonlinear_games)

 	CommonPoolResourceDilemmaCommitment (class in egttools.games)

 	(class in egttools.games.nonlinear_games)

 	conditional_low() (CommonPoolResourceDilemma method), [1]

 	conj() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	conjugate() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	contains() (Circle method)

 	contains_point() (Circle method)

 	contains_points() (Circle method)

 	convert_xunits() (Circle method)

 	convert_yunits() (Circle method)

 	Cooperator (class in egttools.behaviors.NormalForm.TwoActions)

 	copy() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	corners (Simplex2D attribute), [1], [2]

 	cost (OneShotCRD property)

 	count_nonzero() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	cpp_vectorized_replicator_equation_n_player() (in module egttools.helpers.vectorized)

 	CRDGame (class in egttools.games)

 	CRDGameTU (class in egttools.games)

 	CRDMemoryOnePlayer (class in egttools.behaviors.CRD)

 	create_dummy_axis() (AutoMinorLocator method)

 	csc_matrix (class in egttools.utils)

 	csr_matrix (class in egttools.analytical.sed_analytical)

 	(class in egttools.utils)

D

 	
 	data (csc_matrix attribute)

 	(csr_matrix attribute), [1]

 	(DataTable property)

 	(lil_matrix attribute)

 	DataTable (class in egttools.datastructures)

 	Defector (class in egttools.behaviors.NormalForm.TwoActions)

 	deg2rad() (csc_matrix method)

 	(csr_matrix method), [1]

 	Detective (class in egttools.behaviors.NormalForm.TwoActions)

 	(class in egttools.behaviors.NormalForm.TwoActions.nfg_strategies)

 	diagonal() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	dot() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	
 	draw() (Circle method)

 	draw_gradients() (Simplex2D method), [1], [2]

 	draw_invasion_diagram() (in module egttools.plotting)

 	(in module egttools.plotting.indicators)

 	draw_scatter_shadow() (Simplex2D method), [1], [2]

 	draw_stationary_distribution() (Simplex2D method), [1], [2]

 	draw_stationary_points() (Simplex2D method), [1], [2]

 	draw_trajectories() (Simplex2D method), [1], [2]

 	draw_trajectory_from_points() (Simplex2D method), [1], [2]

 	draw_trajectory_from_roots() (Simplex2D method), [1], [2]

 	draw_trajectory_from_vector() (Simplex2D method), [1], [2]

 	draw_triangle() (Simplex2D method), [1], [2]

 	dtype (csc_matrix attribute)

 	(csc_matrix property)

 	(csr_matrix attribute), [1]

 	(csr_matrix property), [1]

 	(lil_matrix attribute)

E

 	
 	
 egttools

 	module

 	
 egttools.analytical

 	module

 	
 egttools.analytical.sed_analytical

 	module

 	
 egttools.analytical.utils

 	module

 	
 egttools.behaviors

 	module

 	
 egttools.behaviors.CPR

 	module

 	
 egttools.behaviors.CPR.abstract_cpr_strategy

 	module

 	
 egttools.behaviors.CPR.cpr_strategies

 	module

 	
 egttools.behaviors.CRD

 	module

 	
 egttools.behaviors.CRD.goal_based

 	module

 	
 egttools.behaviors.CRD.moving_average

 	module

 	
 egttools.behaviors.CRD.time_based

 	module

 	
 egttools.behaviors.NormalForm

 	module

 	
 egttools.behaviors.NormalForm.TwoActions

 	module

 	
 egttools.behaviors.NormalForm.TwoActions.nfg_strategies

 	module

 	
 egttools.behaviors.opinion_behaviors

 	module

 	
 egttools.behaviors.pgg_behaviors

 	module

 	
 egttools.datastructures

 	module

 	
 egttools.distributions

 	module

 	
 egttools.games

 	module

 	
 egttools.games.abstract_games

 	module

 	
 egttools.games.informal_risk

 	module

 	
 egttools.games.nonlinear_games

 	module

 	
 	
 egttools.games.opinion_game

 	module

 	
 egttools.games.pgg

 	module

 	
 egttools.helpers

 	module

 	
 egttools.helpers.vectorized

 	module

 	
 egttools.numerical

 	module

 	
 egttools.numerical.numerical

 	module

 	
 egttools.plotting

 	module

 	
 egttools.plotting.helpers

 	module

 	
 egttools.plotting.indicators

 	module

 	
 egttools.plotting.simplex2d

 	module

 	
 egttools.plotting.simplified

 	module

 	
 egttools.utils

 	module

 	eig() (in module egttools.analytical.sed_analytical)

 	eigvals() (in module egttools.analytical.utils)

 	(in module egttools.utils)

 	eliminate_zeros() (csc_matrix method)

 	(csr_matrix method), [1]

 	endowment (CRDGame property)

 	(CRDGameTU property)

 	(OneShotCRD property)

 	enhancement_factor (CRDGame property)

 	EpsilonGRIM (class in egttools.behaviors.NormalForm.TwoActions)

 	(class in egttools.behaviors.NormalForm.TwoActions.nfg_strategies)

 	EpsilonTFT (class in egttools.behaviors.NormalForm.TwoActions)

 	(class in egttools.behaviors.NormalForm.TwoActions.nfg_strategies)

 	estimate_fixation_probability() (PairwiseComparisonNumerical method), [1]

 	estimate_stationary_distribution() (PairwiseComparisonNumerical method), [1]

 	estimate_stationary_distribution_sparse() (PairwiseComparisonNumerical method), [1]

 	estimate_strategy_distribution() (PairwiseComparisonNumerical method), [1]

 	evolve() (PairwiseComparisonNumerical method), [1]

 	expected_payoffs() (NormalFormGame method)

 	expm1() (csc_matrix method)

 	(csr_matrix method), [1]

 	extraction() (CommonPoolResourceDilemma method), [1]

 	extraction_strategy() (CommonPoolResourceDilemma method), [1]

F

 	
 	fair_extraction() (in module egttools.behaviors.CPR.cpr_strategies)

 	FairExtraction (class in egttools.behaviors.CPR.cpr_strategies)

 	FakeStrategy (class in egttools.behaviors.CPR.cpr_strategies)

 	fermi() (StochDynamics static method), [1], [2]

 	fill (Circle property)

 	find_roots() (in module egttools.analytical.utils)

 	(in module egttools.plotting.simplified)

 	find_roots_and_stability() (in module egttools.analytical.utils)

 	find_roots_in_discrete_barycentric_coordinates() (in module egttools.plotting.helpers)

 	(in module egttools.plotting.simplified)

 	find_saddle_type_and_gradient_direction() (in module egttools.utils)

 	find_where_point_is_in_simplex() (in module egttools.plotting.helpers)

 	(in module egttools.plotting.simplex2d)

 	findobj() (Circle method)

 	
 	fitness_group() (StochDynamics method), [1], [2]

 	fitness_pair() (StochDynamics method), [1], [2]

 	fixation_probability() (StochDynamics method), [1], [2]

 	FixedExtraction (class in egttools.behaviors.CPR.cpr_strategies)

 	floor() (csc_matrix method)

 	(csr_matrix method), [1]

 	format (csc_matrix attribute)

 	(csr_matrix attribute), [1]

 	(lil_matrix attribute)

 	format_cursor_data() (Circle method)

 	FreeStrategy (class in egttools.behaviors.CPR.cpr_strategies)

 	full_fitness_difference_group() (StochDynamics method), [1], [2]

 	full_fitness_difference_pairwise() (StochDynamics method), [1], [2]

 	full_gradient_selection() (StochDynamics method), [1], [2]

 	full_gradient_selection_without_mutation() (StochDynamics method), [1], [2]

G

 	
 	game() (PairwiseComparison method), [1], [2]

 	generate() (Random static method), [1], [2]

 	GenerousTFT (class in egttools.behaviors.NormalForm.TwoActions)

 	get_aa() (Circle method)

 	get_action() (AbstractCRDStrategy method), [1], [2], [3]

 	(AbstractNFGStrategy method), [1]

 	(ActionInertia method)

 	(Cooperator method)

 	(CRDMemoryOnePlayer method)

 	(Defector method)

 	(Detective method), [1]

 	(EpsilonGRIM method), [1]

 	(EpsilonTFT method), [1]

 	(GenerousTFT method)

 	(GoalBasedCRDStrategy method), [1]

 	(GradualTFT method)

 	(GRIM method)

 	(ImperfectTFT method)

 	(MemoryOneStrategy method), [1]

 	(MovingAverageCRDStrategy method), [1]

 	(Opinion method)

 	(Pavlov method)

 	(PGGOneShotStrategy method), [1]

 	(Random method)

 	(SuspiciousTFT method)

 	(TFT method)

 	(TFTT method)

 	(TimeBasedCRDStrategy method), [1]

 	(TTFT method)

 	get_agg_filter() (Circle method)

 	get_alpha() (Circle method)

 	get_angle() (Circle method)

 	get_animated() (Circle method)

 	get_antialiased() (Circle method)

 	get_capstyle() (Circle method)

 	get_center() (Circle method)

 	get_children() (Circle method)

 	get_clip_box() (Circle method)

 	get_clip_on() (Circle method)

 	get_clip_path() (Circle method)

 	get_corners() (Circle method)

 	get_cursor_data() (Circle method)

 	get_data_transform() (Circle method)

 	get_ec() (Circle method)

 	get_edgecolor() (Circle method)

 	get_extents() (Circle method)

 	get_extraction() (AbstractCPRStrategy method), [1], [2]

 	(CommitmentStrategy method)

 	(FairExtraction method)

 	(FakeStrategy method)

 	(FixedExtraction method)

 	(FreeStrategy method)

 	(HighExtraction method)

 	(NashExtraction method)

 	get_facecolor() (Circle method)

 	get_fc() (Circle method)

 	get_figure() (Circle method)

 	get_figure_and_axis() (Simplex2D method), [1], [2]

 	get_fill() (Circle method)

 	get_gid() (Circle method)

 	get_hatch() (Circle method)

 	get_height() (Circle method)

 	get_in_layout() (Circle method)

 	get_joinstyle() (Circle method)

 	get_label() (Circle method)

 	get_linestyle() (Circle method)

 	get_linewidth() (Circle method)

 	get_ls() (Circle method)

 	get_lw() (Circle method)

 	
 	get_mouseover() (Circle method)

 	get_nb_committed() (CommonPoolResourceDilemmaCommitment method), [1]

 	get_pairwise_gradient_from_replicator() (in module egttools.analytical.utils)

 	get_pairwise_gradient_from_replicator_n_player() (in module egttools.analytical.utils)

 	get_patch_transform() (Circle method)

 	get_path() (Circle method)

 	get_path_effects() (Circle method)

 	get_payoff() (AbstractCPRStrategy static method), [1], [2]

 	(CommitmentStrategy static method)

 	(FairExtraction static method)

 	(FakeStrategy static method)

 	(FixedExtraction static method)

 	(FreeStrategy static method)

 	(HighExtraction static method)

 	(NashExtraction static method)

 	get_payoff_function() (in module egttools.utils)

 	get_picker() (Circle method)

 	get_radius() (Circle method)

 	get_rasterized() (Circle method)

 	get_shape() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	get_sketch_params() (Circle method)

 	get_snap() (Circle method)

 	get_tightbbox() (Circle method)

 	get_transform() (Circle method)

 	get_transformed_clip_path_and_affine() (Circle method)

 	get_url() (Circle method)

 	get_verts() (Circle method)

 	get_visible() (Circle method)

 	get_width() (Circle method)

 	get_window_extent() (Circle method)

 	get_zorder() (Circle method)

 	getcol() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	getformat() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	getH() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	getmaxprint() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	getnnz() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	getrow() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	getrowview() (lil_matrix method)

 	GoalBasedCRDStrategy (class in egttools.behaviors.CRD)

 	(class in egttools.behaviors.CRD.goal_based)

 	gradient_selection() (StochDynamics method), [1], [2]

 	GradualTFT (class in egttools.behaviors.NormalForm.TwoActions)

 	GRIM (class in egttools.behaviors.NormalForm.TwoActions)

 	group_achievement_per_group (CRDGame property)

 	(OneShotCRD property)

 	group_size (CRDGame property)

 	(CRDGameTU property)

 	(OneShotCRD property)

 	group_size() (AbstractNPlayerGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGameExpectedPayoff method)

 	(CommonPoolResourceDilemma method), [1]

 	(CommonPoolResourceDilemmaCommitment method), [1]

 	(MatrixNPlayerGameHolder method), [1]

 	(NPlayerStagHunt method), [1]

 	(OpinionGame method)

 	(PGG method), [1]

H

 	
 	has_canonical_format (csc_matrix property)

 	(csr_matrix property), [1]

 	has_sorted_indices (csc_matrix attribute)

 	(csc_matrix property)

 	(csr_matrix attribute), [1]

 	(csr_matrix property), [1]

 	
 	have_units() (Circle method)

 	headers (DataTable property)

 	height (Circle property)

 	high_extraction() (CommonPoolResourceDilemma method), [1]

 	(in module egttools.behaviors.CPR.cpr_strategies)

 	HighExtraction (class in egttools.behaviors.CPR.cpr_strategies)

I

 	
 	ImperfectTFT (class in egttools.behaviors.NormalForm.TwoActions)

 	indices (csc_matrix attribute)

 	(csr_matrix attribute), [1]

 	indptr (csc_matrix attribute)

 	(csr_matrix attribute), [1]

 	InformalRiskGame (class in egttools.games)

 	(class in egttools.games.informal_risk)

 	init() (Random static method), [1], [2]

 	is_commitment_validated() (AbstractCPRStrategy method), [1], [2]

 	(CommitmentStrategy method)

 	(FairExtraction method)

 	(FakeStrategy method)

 	(FixedExtraction method)

 	(FreeStrategy method)

 	(HighExtraction method)

 	(NashExtraction method)

 	is_stochastic() (AbstractNFGStrategy method), [1]

 	(ActionInertia method)

 	(Cooperator method)

 	(Defector method)

 	(Detective method), [1]

 	(EpsilonGRIM method), [1]

 	(EpsilonTFT method), [1]

 	(GenerousTFT method)

 	(GradualTFT method)

 	(GRIM method)

 	(ImperfectTFT method)

 	(MemoryOneStrategy method), [1]

 	(Pavlov method)

 	(Random method)

 	(SuspiciousTFT method)

 	(TFT method)

 	(TFTT method)

 	(TTFT method)

 	
 	is_transform_set() (Circle method)

L

 	
 	lil_matrix (class in egttools.analytical.sed_analytical)

 	log1p() (csc_matrix method)

 	(csr_matrix method), [1]

 	
 	low_extraction() (CommonPoolResourceDilemma method), [1]

M

 	
 	Matrix2PlayerGameHolder (class in egttools.games)

 	(class in egttools.plotting.simplified)

 	MatrixNPlayerGameHolder (class in egttools.games)

 	(class in egttools.plotting.simplified)

 	max() (csc_matrix method)

 	(csr_matrix method), [1]

 	max_rounds (TimingUncertainty property)

 	maximum() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	MAXTICKS (AutoMinorLocator attribute)

 	mean() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	MemoryOneStrategy (class in egttools.behaviors.NormalForm.TwoActions)

 	(class in egttools.behaviors.NormalForm.TwoActions.nfg_strategies)

 	min() (csc_matrix method)

 	(csr_matrix method), [1]

 	min_extraction() (CommonPoolResourceDilemma method), [1]

 	min_nb_cooperators (OneShotCRD property)

 	min_rounds (CRDGameTU property)

 	minimum() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	
 module

 	egttools

 	egttools.analytical

 	egttools.analytical.sed_analytical

 	egttools.analytical.utils

 	egttools.behaviors

 	egttools.behaviors.CPR

 	egttools.behaviors.CPR.abstract_cpr_strategy

 	egttools.behaviors.CPR.cpr_strategies

 	egttools.behaviors.CRD

 	egttools.behaviors.CRD.goal_based

 	egttools.behaviors.CRD.moving_average

 	egttools.behaviors.CRD.time_based

 	egttools.behaviors.NormalForm

 	egttools.behaviors.NormalForm.TwoActions

 	egttools.behaviors.NormalForm.TwoActions.nfg_strategies

 	egttools.behaviors.opinion_behaviors

 	egttools.behaviors.pgg_behaviors

 	egttools.datastructures

 	egttools.distributions

 	egttools.games

 	egttools.games.abstract_games

 	egttools.games.informal_risk

 	egttools.games.nonlinear_games

 	egttools.games.opinion_game

 	egttools.games.pgg

 	egttools.helpers

 	egttools.helpers.vectorized

 	egttools.numerical

 	egttools.numerical.numerical

 	egttools.plotting

 	egttools.plotting.helpers

 	egttools.plotting.indicators

 	egttools.plotting.simplex2d

 	egttools.plotting.simplified

 	egttools.utils

 	
 	moment() (in module egttools.games.opinion_game)

 	mouseover (Circle property)

 	MovingAverageCRDStrategy (class in egttools.behaviors.CRD)

 	(class in egttools.behaviors.CRD.moving_average)

 	multinomial_pmf() (in module egttools.distributions)

 	multiply() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	multivariate_hypergeometric_pdf() (in module egttools.distributions)

N

 	
 	nash_extraction() (in module egttools.behaviors.CPR.cpr_strategies)

 	NashExtraction (class in egttools.behaviors.CPR.cpr_strategies)

 	nb_group_configurations() (AbstractNPlayerGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGameExpectedPayoff method)

 	(CommonPoolResourceDilemma method), [1]

 	(CommonPoolResourceDilemmaCommitment method), [1]

 	(MatrixNPlayerGameHolder method), [1]

 	(NPlayerStagHunt method), [1]

 	(OpinionGame method)

 	(PGG method), [1]

 	nb_rounds (CRDGame property)

 	(NormalFormGame property)

 	nb_states (CRDGame property)

 	(CRDGameTU property)

 	(NormalFormGame property)

 	(OneShotCRD property)

 	(PairwiseComparisonNumerical property), [1]

 	nb_states() (PairwiseComparison method), [1], [2]

 	nb_strategies (InformalRiskGame property), [1]

 	(PairwiseComparisonNumerical property), [1]

 	nb_strategies() (AbstractGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGameExpectedPayoff method)

 	(AbstractTwoPLayerGame method), [1]

 	(CommonPoolResourceDilemma method), [1]

 	(CommonPoolResourceDilemmaCommitment method), [1]

 	(CRDGame method)

 	(CRDGameTU method)

 	(Matrix2PlayerGameHolder method), [1]

 	(MatrixNPlayerGameHolder method), [1]

 	(NormalFormGame method)

 	(NPlayerStagHunt method), [1]

 	(OneShotCRD method)

 	(OpinionGame method)

 	(PairwiseComparison method), [1], [2]

 	(PGG method), [1]

 	
 	ndim (csc_matrix attribute), [1]

 	(csr_matrix attribute), [1], [2], [3]

 	(lil_matrix attribute), [1]

 	nnz (csc_matrix attribute)

 	(csc_matrix property)

 	(csr_matrix attribute), [1]

 	(csr_matrix property), [1]

 	(lil_matrix attribute)

 	(lil_matrix property)

 	nonsingular() (AutoMinorLocator method)

 	nonzero() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	NormalFormGame (class in egttools.games)

 	NPlayerStagHunt (class in egttools.games)

 	(class in egttools.games.nonlinear_games)

O

 	
 	odeint() (in module egttools.plotting.simplex2d)

 	OneShotCRD (class in egttools.games)

 	
 	Opinion (class in egttools.behaviors.opinion_behaviors)

 	opinion_factory() (in module egttools.behaviors.opinion_behaviors)

 	OpinionGame (class in egttools.games.opinion_game)

P

 	
 	p (TimingUncertainty property)

 	PairwiseComparison (class in egttools.analytical)

 	(class in egttools.numerical.numerical)

 	(class in egttools.plotting.simplified)

 	PairwiseComparisonNumerical (class in egttools.numerical)

 	(class in egttools.numerical.numerical)

 	Pavlov (class in egttools.behaviors.NormalForm.TwoActions)

 	payoff() (AbstractGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGameExpectedPayoff method)

 	(AbstractTwoPLayerGame method), [1]

 	(CommonPoolResourceDilemma method), [1]

 	(CommonPoolResourceDilemmaCommitment method), [1]

 	(CRDGame method)

 	(CRDGameTU method)

 	(InformalRiskGame method), [1]

 	(Matrix2PlayerGameHolder method), [1]

 	(MatrixNPlayerGameHolder method), [1]

 	(NormalFormGame method)

 	(NPlayerStagHunt method), [1]

 	(OneShotCRD method)

 	(OpinionGame method)

 	(PGG method), [1]

 	payoff_no_commitment() (in module egttools.behaviors.CPR.cpr_strategies)

 	payoffs (InformalRiskGame property), [1]

 	(PairwiseComparisonNumerical property), [1]

 	payoffs() (AbstractGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGameExpectedPayoff method)

 	(AbstractTwoPLayerGame method), [1]

 	(CommonPoolResourceDilemma method), [1]

 	(CommonPoolResourceDilemmaCommitment method), [1]

 	(CRDGame method)

 	(CRDGameTU method)

 	(Matrix2PlayerGameHolder method), [1]

 	(MatrixNPlayerGameHolder method), [1]

 	(NormalFormGame method)

 	(NPlayerStagHunt method), [1]

 	(OneShotCRD method)

 	(OpinionGame method)

 	(PGG method), [1]

 	pchanged() (Circle method)

 	permutations (class in egttools.analytical.sed_analytical)

 	perturb_state() (in module egttools.plotting.helpers)

 	(in module egttools.plotting.simplex2d)

 	perturb_state_discrete() (in module egttools.plotting.helpers)

 	(in module egttools.plotting.simplex2d)

 	PGG (class in egttools.games)

 	(class in egttools.games.pgg)

 	
 	PGGOneShotStrategy (class in egttools.behaviors.pgg_behaviors)

 	(class in egttools.games.pgg)

 	pick() (Circle method)

 	pickable() (Circle method)

 	play() (AbstractGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGameExpectedPayoff method)

 	(AbstractTwoPLayerGame method), [1]

 	(CommonPoolResourceDilemma method), [1]

 	(CommonPoolResourceDilemmaCommitment method), [1]

 	(CRDGame method)

 	(CRDGameTU method)

 	(InformalRiskGame method), [1]

 	(Matrix2PlayerGameHolder method), [1]

 	(MatrixNPlayerGameHolder method), [1]

 	(NormalFormGame method)

 	(NPlayerStagHunt method), [1]

 	(OneShotCRD method)

 	(OpinionGame method)

 	(PGG method), [1]

 	player_factory() (in module egttools.behaviors.pgg_behaviors)

 	plot_gradient() (in module egttools.plotting)

 	(in module egttools.plotting.indicators)

 	plot_gradients() (in module egttools.plotting)

 	(in module egttools.plotting.indicators)

 	plot_pairwise_comparison_rule_dynamics_in_simplex() (in module egttools.plotting)

 	(in module egttools.plotting.simplified)

 	plot_pairwise_comparison_rule_dynamics_in_simplex_without_roots() (in module egttools.plotting.simplified)

 	plot_replicator_dynamics_in_simplex() (in module egttools.plotting)

 	(in module egttools.plotting.simplified)

 	pop_size (PairwiseComparisonNumerical property), [1]

 	population_size() (PairwiseComparison method), [1], [2]

 	power() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	prob_increase_decrease() (StochDynamics method), [1], [2]

 	prob_increase_decrease_with_mutation() (StochDynamics method), [1], [2]

 	properties() (Circle method)

 	proposes_commitment() (AbstractCPRStrategy method), [1], [2]

 	(CommitmentStrategy method)

 	(FairExtraction method)

 	(FakeStrategy method)

 	(FixedExtraction method)

 	(FreeStrategy method)

 	(HighExtraction method)

 	(NashExtraction method)

 	prune() (csc_matrix method)

 	(csr_matrix method), [1]

R

 	
 	rad2deg() (csc_matrix method)

 	(csr_matrix method), [1]

 	radius (Circle property)

 	raise_if_exceeds() (AutoMinorLocator method)

 	Random (class in egttools)

 	(class in egttools.behaviors.NormalForm.TwoActions)

 	(class in egttools.behaviors.NormalForm.TwoActions.nfg_strategies)

 	(class in egttools.numerical.numerical)

 	refiner (Simplex2D attribute), [1], [2]

 	remove() (Circle method)

 	remove_callback() (Circle method)

 	replicator_equation() (in module egttools.analytical)

 	(in module egttools.analytical.sed_analytical)

 	(in module egttools.analytical.utils)

 	(in module egttools.numerical.numerical)

 	(in module egttools.plotting.simplified)

 	replicator_equation_n_player() (in module egttools.analytical)

 	(in module egttools.analytical.sed_analytical)

 	(in module egttools.analytical.utils)

 	(in module egttools.helpers.vectorized)

 	(in module egttools.numerical.numerical)

 	(in module egttools.plotting.simplified)

 	
 	reshape() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	resize() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	rint() (csc_matrix method)

 	(csr_matrix method), [1]

 	risk (CRDGame property)

 	(CRDGameTU property)

 	(OneShotCRD property)

 	root() (in module egttools.analytical.utils)

 	(in module egttools.plotting.helpers)

 	rows (DataTable property)

 	(lil_matrix attribute)

 	run() (PairwiseComparisonNumerical method), [1]

S

 	
 	sample_simplex() (in module egttools)

 	(in module egttools.analytical.sed_analytical)

 	(in module egttools.games.abstract_games)

 	(in module egttools.games.informal_risk)

 	(in module egttools.games.nonlinear_games)

 	(in module egttools.games.opinion_game)

 	(in module egttools.games.pgg)

 	(in module egttools.numerical.numerical)

 	(in module egttools.plotting.helpers)

 	(in module egttools.plotting.simplex2d)

 	sample_simplex_directly() (in module egttools.numerical.numerical)

 	sample_unit_simplex() (in module egttools)

 	(in module egttools.analytical.utils)

 	(in module egttools.numerical.numerical)

 	(in module egttools.plotting.simplex2d)

 	save_payoffs() (AbstractGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGameExpectedPayoff method)

 	(AbstractTwoPLayerGame method), [1]

 	(CommonPoolResourceDilemma method), [1]

 	(CommonPoolResourceDilemmaCommitment method), [1]

 	(CRDGame method)

 	(CRDGameTU method)

 	(InformalRiskGame method), [1]

 	(Matrix2PlayerGameHolder method), [1]

 	(MatrixNPlayerGameHolder method), [1]

 	(NormalFormGame method)

 	(NPlayerStagHunt method), [1]

 	(OneShotCRD method)

 	(OpinionGame method)

 	(PGG method), [1]

 	schur() (in module egttools.utils)

 	seed() (Random static method), [1], [2]

 	set() (Circle method)

 	set_aa() (Circle method)

 	set_agg_filter() (Circle method)

 	set_alpha() (Circle method)

 	set_angle() (Circle method)

 	set_animated() (Circle method)

 	set_antialiased() (Circle method)

 	set_axis() (AutoMinorLocator method)

 	set_bounds() (AutoMinorLocator method)

 	set_capstyle() (Circle method)

 	set_center() (Circle method)

 	set_clip_box() (Circle method)

 	set_clip_on() (Circle method)

 	set_clip_path() (Circle method)

 	set_color() (Circle method)

 	set_data_interval() (AutoMinorLocator method)

 	set_ec() (Circle method)

 	set_edgecolor() (Circle method)

 	set_facecolor() (Circle method)

 	set_fc() (Circle method)

 	set_figure() (Circle method)

 	set_fill() (Circle method)

 	set_gid() (Circle method)

 	set_hatch() (Circle method)

 	set_height() (Circle method)

 	set_in_layout() (Circle method)

 	set_joinstyle() (Circle method)

 	set_label() (Circle method)

 	
 	set_linestyle() (Circle method)

 	set_linewidth() (Circle method)

 	set_ls() (Circle method)

 	set_lw() (Circle method)

 	set_mouseover() (Circle method)

 	set_params() (AutoMinorLocator method)

 	set_path_effects() (Circle method)

 	set_picker() (Circle method)

 	set_radius() (Circle method)

 	set_rasterized() (Circle method)

 	set_shape() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	set_sketch_params() (Circle method)

 	set_snap() (Circle method)

 	set_transform() (Circle method)

 	set_url() (Circle method)

 	set_view_interval() (AutoMinorLocator method)

 	set_visible() (Circle method)

 	set_width() (Circle method)

 	set_zorder() (Circle method)

 	setdiag() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	shape (csc_matrix attribute)

 	(csc_matrix property)

 	(csr_matrix attribute), [1]

 	(csr_matrix property), [1]

 	(lil_matrix attribute)

 	(lil_matrix property)

 	side_slope (Simplex2D attribute), [1], [2]

 	sigmoid() (in module egttools.games.opinion_game)

 	sign() (csc_matrix method)

 	(csr_matrix method), [1]

 	Simplex2D (class in egttools.plotting)

 	(class in egttools.plotting.simplex2d)

 	(class in egttools.plotting.simplified)

 	simplex_iterator() (in module egttools.plotting.helpers)

 	sin() (csc_matrix method)

 	(csr_matrix method), [1]

 	sinh() (csc_matrix method)

 	(csr_matrix method), [1]

 	sort_indices() (csc_matrix method)

 	(csr_matrix method), [1]

 	sorted_indices() (csc_matrix method)

 	(csr_matrix method), [1]

 	sqrt() (csc_matrix method)

 	(csr_matrix method), [1]

 	stale (Circle property)

 	sticky_edges (Circle property)

 	StochDynamics (class in egttools.analytical)

 	(class in egttools.analytical.sed_analytical)

 	(class in egttools.analytical.utils)

 	strategies (CRDGame property)

 	(CRDGameTU property)

 	(NormalFormGame property)

 	sum() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	sum_duplicates() (csc_matrix method)

 	(csr_matrix method), [1]

 	SuspiciousTFT (class in egttools.behaviors.NormalForm.TwoActions)

T

 	
 	tan() (csc_matrix method)

 	(csr_matrix method), [1]

 	tanh() (csc_matrix method)

 	(csr_matrix method), [1]

 	target (CRDGame property)

 	(CRDGameTU property)

 	TFT (class in egttools.behaviors.NormalForm.TwoActions)

 	TFTT (class in egttools.behaviors.NormalForm.TwoActions)

 	tick_values() (AutoMinorLocator method)

 	TimeBasedCRDStrategy (class in egttools.behaviors.CRD)

 	(class in egttools.behaviors.CRD.time_based)

 	TimingUncertainty (class in egttools.distributions)

 	toarray() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	tobsr() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	tocoo() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	tocsc() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	tocsr() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	todense() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	todia() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	todok() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	tolil() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	top_corner (Simplex2D attribute), [1], [2]

 	trace() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	transform_payoffs_to_pairwise() (in module egttools.utils)

 	transition_and_fixation_matrix() (StochDynamics method), [1], [2]

 	transpose() (csc_matrix method)

 	(csr_matrix method), [1]

 	(lil_matrix method)

 	triangle (Simplex2D attribute), [1], [2]

 	trimesh (Simplex2D attribute), [1], [2]

 	trunc() (csc_matrix method)

 	(csr_matrix method), [1]

 	
 	TTFT (class in egttools.behaviors.NormalForm.TwoActions)

 	type (InformalRiskGame property), [1]

 	(Opinion property)

 	(PGGOneShotStrategy property), [1]

 	type() (AbstractCPRStrategy method), [1], [2]

 	(AbstractCRDStrategy method), [1], [2], [3]

 	(AbstractGame method), [1], [2], [3], [4]

 	(AbstractNFGStrategy method), [1]

 	(AbstractNPlayerGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGameExpectedPayoff method)

 	(AbstractTwoPLayerGame method), [1]

 	(ActionInertia method)

 	(CommitmentStrategy method)

 	(CommonPoolResourceDilemma method), [1]

 	(CommonPoolResourceDilemmaCommitment method), [1]

 	(Cooperator method)

 	(CRDGame method)

 	(CRDGameTU method)

 	(CRDMemoryOnePlayer method)

 	(Defector method)

 	(Detective method), [1]

 	(EpsilonGRIM method), [1]

 	(EpsilonTFT method), [1]

 	(FairExtraction method)

 	(FakeStrategy method)

 	(FixedExtraction method)

 	(FreeStrategy method)

 	(GenerousTFT method)

 	(GoalBasedCRDStrategy method), [1]

 	(GradualTFT method)

 	(GRIM method)

 	(HighExtraction method)

 	(ImperfectTFT method)

 	(Matrix2PlayerGameHolder method), [1]

 	(MatrixNPlayerGameHolder method), [1]

 	(MemoryOneStrategy method), [1]

 	(MovingAverageCRDStrategy method), [1]

 	(NashExtraction method)

 	(NormalFormGame method)

 	(NPlayerStagHunt method), [1]

 	(OneShotCRD method)

 	(OpinionGame method)

 	(Pavlov method)

 	(PGG method), [1]

 	(Random method)

 	(SuspiciousTFT method)

 	(TFT method)

 	(TFTT method)

 	(TimeBasedCRDStrategy method), [1]

 	(TTFT method)

 	TypeVar (class in egttools.plotting.simplex2d)

U

 	
 	update() (Circle method)

 	update_from() (Circle method)

 	update_group_size() (StochDynamics method), [1], [2]

 	update_payoff() (AbstractNPlayerGame method), [1], [2], [3], [4]

 	(AbstractNPlayerGameExpectedPayoff method)

 	(CommonPoolResourceDilemma method), [1]

 	(CommonPoolResourceDilemmaCommitment method), [1]

 	(NPlayerStagHunt method), [1]

 	(OpinionGame method)

 	(PGG method), [1]

 	
 	update_payoff_matrix() (Matrix2PlayerGameHolder method), [1]

 	(MatrixNPlayerGameHolder method), [1]

 	update_payoffs() (StochDynamics method), [1], [2]

 	update_population_size() (PairwiseComparison method), [1], [2]

 	(StochDynamics method), [1], [2]

V

 	
 	vectorized_barycentric_to_xy_coordinates() (in module egttools.helpers.vectorized)

 	(in module egttools.plotting.simplified)

 	vectorized_replicator_equation() (in module egttools.helpers.vectorized)

 	(in module egttools.plotting.simplified)

 	
 	vectorized_replicator_equation_n_player() (in module egttools.helpers.vectorized)

 	(in module egttools.numerical.numerical)

 	(in module egttools.plotting.simplified)

 	view_limits() (AutoMinorLocator method)

W

 	
 	warn() (in module egttools.analytical.sed_analytical)

 	(in module egttools.utils)

 	width (Circle property)

 	would_like_to_commit() (AbstractCPRStrategy method), [1], [2]

 	(CommitmentStrategy method)

 	(FairExtraction method)

 	(FakeStrategy method)

 	(FixedExtraction method)

 	(FreeStrategy method)

 	(HighExtraction method)

 	(NashExtraction method)

X

 	
 	xy_to_barycentric_coordinates() (in module egttools.plotting.helpers)

 	(in module egttools.plotting.simplex2d)

 	(in module egttools.plotting.simplified)

Z

 	
 	zorder (Circle attribute)

	egttools

	The egttools package implements methods to study evolutionary dynamics.

 _images/examples_examples_of_use_12_1.png
L
n
N
S

1 1 1 T
o n o n
N - - =]

0.00

6 © © o
(9) uond3|as Jo jJuaipesb

1.0

0.4 0.6 0.8
frequency of hawks

0.2

0.0

_images/examples_examples_of_use_18_1.png

_images/examples_examples_of_use_14_1.png
L
n
N
S

L L L
© 1w o u!w o
N H2 =5 o ©
6 6 © o o
(9) uond3|as Jo jJuaipesb

1.0

0.2 0.4 0.6 0.8
frequency of hawks

0.0

_images/examples_examples_of_use_30_1.png
Hawk

0.07

0.06

°

.05

°

.04

o o
S g
8 2
uo1393|3s 40 Juaipelb

°
°

°

.00

Human

0.0020

uoinquIsip Aleuoijeis

_images/examples_examples_of_use_26_1.png
__
© <
S 3 o

L L L

N © ® o

7 = 9 3

6 © 6 6 & ©
(9) uond3|as Jo jJuaipel

°
S
S

6

0.8 1.0

0.6
frequency of hawks (k/Z)

0.2 0.4

0.0

_images/examples_examples_of_use_9_1.png
L L
nw o 1w o
7 = © 9
6 6 © o o
(9) uond3|as Jo jJuaipesb

L L
n o
N
S

1.0

0.2 0.4 0.6 0.8
frequency of hawks

0.0

_images/examples_plot_simplex_simplified_10_0.png

_images/examples_plot_simplex_29_0.png
0.00010

0.00008

0.00006

0.00004

0.00002

0.00000

uoinquIsip Aleuoijeis

_images/examples_plot_simplex_simplified_18_0.png
/‘(//// >/’,\\ !."%i I..Gé
2 ol &

—
+ C

_images/examples_plot_simplex_simplified_12_0.png
gradient of selection

w o w o =w o un
m & &] 4 2 8
S S

s © o o o

_images/hawk_dove_nperson_analytical_gradient.png
] L
N (=) N <
Q Q Q Q
°© ° 9 9

(D) uo1d3|as Jo juaipeub

—0.06 |-

1.0

0.6 0.8

0.4
frequency of hawks

0.2

0.0

_images/hawk_dove_analytical_gradient.png
1
n
o
o

| | |

(=) Ty o o) (=)
N = = Qo Q
o (=) (=) (=) (=)
(D) uoI323]3s Jo juadipeab

1.0

0.6 0.8

0.4
freauencv of hawks

0.2

0.0

_images/simplex_example_infinite_pop_1.png
intensity of selection

005

_images/logo-full.png
t%ls

_images/simplex_example_infinite_pop_2.png

_images/examples_normal_form_game_mc_simulations_12_0.png
10

0.8

0.6

0.4

02

0.0

kiz

_images/examples_normal_form_game_mc_simulations_19_0.png
10

0.8

0.6

0.4

02

100

10t

10?

10°
generation

10¢

10°

108

_images/examples_normal_form_game_mc_simulations_15_0.png
10

0.8

0.6

0.4

100 10t 10? 10°
generation

10¢

10° 108

_images/examples_plot_invasion_diagram_16_0.png
0.11

0.41

0.45

0.00

_images/examples_normal_form_game_mc_simulations_31_0.png
Frequency of Doves

0.40 *
o¥
0.351 [%
0.304 ® -
. » analytical
0.25 4 : e numerical
0.201 g
.

0.151
O'lo_mu T T T T T T T T T T T T T

1074 1073 1072 107t 10° 10!

B

_images/examples_plot_simplex_14_0.png
gradient of selection

o w o w o

0 0
m & &] 4 2 8
S S

s © o o o

_images/examples_plot_simplex_13_0.png

_images/examples_plot_simplex_28_0.png
0.00010

0.00008

0.00006

0.00004

0.00002

0.00000

uoinquIsip Aleuoijeis

0.10

uo1393|3s 40 Juaipelb

_static/minus.png

_static/logo.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 EGTtools – Toolbox for Evolutionary Game Theory

_static/file.png

